neural_gpu.py 13 KB
Newer Older
Martin Wicke's avatar
Martin Wicke committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2015 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
Lukasz Kaiser's avatar
Lukasz Kaiser committed
15
16
17
18
19
20
"""The Neural GPU Model."""

import time

import tensorflow as tf

21
import data_utils
Lukasz Kaiser's avatar
Lukasz Kaiser committed
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48


def conv_linear(args, kw, kh, nin, nout, do_bias, bias_start, prefix):
  """Convolutional linear map."""
  assert args
  if not isinstance(args, (list, tuple)):
    args = [args]
  with tf.variable_scope(prefix):
    k = tf.get_variable("CvK", [kw, kh, nin, nout])
    if len(args) == 1:
      res = tf.nn.conv2d(args[0], k, [1, 1, 1, 1], "SAME")
    else:
      res = tf.nn.conv2d(tf.concat(3, args), k, [1, 1, 1, 1], "SAME")
    if not do_bias: return res
    bias_term = tf.get_variable("CvB", [nout],
                                initializer=tf.constant_initializer(0.0))
    return res + bias_term + bias_start


def sigmoid_cutoff(x, cutoff):
  """Sigmoid with cutoff, e.g., 1.2sigmoid(x) - 0.1."""
  y = tf.sigmoid(x)
  if cutoff < 1.01: return y
  d = (cutoff - 1.0) / 2.0
  return tf.minimum(1.0, tf.maximum(0.0, cutoff * y - d))


49
50
51
52
53
54
55
56
def tanh_cutoff(x, cutoff):
  """Tanh with cutoff, e.g., 1.1tanh(x) cut to [-1. 1]."""
  y = tf.tanh(x)
  if cutoff < 1.01: return y
  d = (cutoff - 1.0) / 2.0
  return tf.minimum(1.0, tf.maximum(-1.0, (1.0 + d) * y))


Lukasz Kaiser's avatar
Lukasz Kaiser committed
57
58
59
60
61
62
def conv_gru(inpts, mem, kw, kh, nmaps, cutoff, prefix):
  """Convolutional GRU."""
  def conv_lin(args, suffix, bias_start):
    return conv_linear(args, kw, kh, len(args) * nmaps, nmaps, True, bias_start,
                       prefix + "/" + suffix)
  reset = sigmoid_cutoff(conv_lin(inpts + [mem], "r", 1.0), cutoff)
63
  # candidate = tanh_cutoff(conv_lin(inpts + [reset * mem], "c", 0.0), cutoff)
Lukasz Kaiser's avatar
Lukasz Kaiser committed
64
65
66
67
68
  candidate = tf.tanh(conv_lin(inpts + [reset * mem], "c", 0.0))
  gate = sigmoid_cutoff(conv_lin(inpts + [mem], "g", 1.0), cutoff)
  return gate * mem + (1 - gate) * candidate


69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
@tf.RegisterGradient("CustomIdG")
def _custom_id_grad(_, grads):
  return grads


def quantize(t, quant_scale, max_value=1.0):
  """Quantize a tensor t with each element in [-max_value, max_value]."""
  t = tf.minimum(max_value, tf.maximum(t, -max_value))
  big = quant_scale * (t + max_value) + 0.5
  with tf.get_default_graph().gradient_override_map({"Floor": "CustomIdG"}):
    res = (tf.floor(big) / quant_scale) - max_value
  return res


def quantize_weights_op(quant_scale, max_value):
  ops = [v.assign(quantize(v, quant_scale, float(max_value)))
         for v in tf.trainable_variables()]
  return tf.group(*ops)


Lukasz Kaiser's avatar
Lukasz Kaiser committed
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
def relaxed_average(var_name_suffix, rx_step):
  """Calculate the average of relaxed variables having var_name_suffix."""
  relaxed_vars = []
  for l in xrange(rx_step):
    with tf.variable_scope("RX%d" % l, reuse=True):
      try:
        relaxed_vars.append(tf.get_variable(var_name_suffix))
      except ValueError:
        pass
  dsum = tf.add_n(relaxed_vars)
  avg = dsum / len(relaxed_vars)
  diff = [v - avg for v in relaxed_vars]
  davg = tf.add_n([d*d for d in diff])
  return avg, tf.reduce_sum(davg)


def relaxed_distance(rx_step):
  """Distance between relaxed variables and their average."""
  res, ops, rx_done = [], [], {}
  for v in tf.trainable_variables():
    if v.name[0:2] == "RX":
      rx_name = v.op.name[v.name.find("/") + 1:]
      if rx_name not in rx_done:
        avg, dist_loss = relaxed_average(rx_name, rx_step)
        res.append(dist_loss)
        rx_done[rx_name] = avg
      ops.append(v.assign(rx_done[rx_name]))
  return tf.add_n(res), tf.group(*ops)


def make_dense(targets, noclass):
  """Move a batch of targets to a dense 1-hot representation."""
  with tf.device("/cpu:0"):
    shape = tf.shape(targets)
    batch_size = shape[0]
    indices = targets + noclass * tf.range(0, batch_size)
Lukasz Kaiser's avatar
Lukasz Kaiser committed
125
    length = tf.expand_dims(batch_size * noclass, 0)
Lukasz Kaiser's avatar
Lukasz Kaiser committed
126
127
128
129
130
131
132
133
134
135
136
    dense = tf.sparse_to_dense(indices, length, 1.0, 0.0)
  return tf.reshape(dense, [-1, noclass])


def check_for_zero(sparse):
  """In a sparse batch of ints, make 1.0 if it's 0 and 0.0 else."""
  with tf.device("/cpu:0"):
    shape = tf.shape(sparse)
    batch_size = shape[0]
    sparse = tf.minimum(sparse, 1)
    indices = sparse + 2 * tf.range(0, batch_size)
Lukasz Kaiser's avatar
Lukasz Kaiser committed
137
138
    dense = tf.sparse_to_dense(indices, tf.expand_dims(2 * batch_size, 0),
                               1.0, 0.0)
Lukasz Kaiser's avatar
Lukasz Kaiser committed
139
140
141
142
143
144
145
146
147
    reshaped = tf.reshape(dense, [-1, 2])
  return tf.reshape(tf.slice(reshaped, [0, 0], [-1, 1]), [-1])


class NeuralGPU(object):
  """Neural GPU Model."""

  def __init__(self, nmaps, vec_size, niclass, noclass, dropout, rx_step,
               max_grad_norm, cutoff, nconvs, kw, kh, height, mode,
148
               learning_rate, pull, pull_incr, min_length, act_noise=0.0):
Lukasz Kaiser's avatar
Lukasz Kaiser committed
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
    # Feeds for parameters and ops to update them.
    self.global_step = tf.Variable(0, trainable=False)
    self.cur_length = tf.Variable(min_length, trainable=False)
    self.cur_length_incr_op = self.cur_length.assign_add(1)
    self.lr = tf.Variable(float(learning_rate), trainable=False)
    self.lr_decay_op = self.lr.assign(self.lr * 0.98)
    self.pull = tf.Variable(float(pull), trainable=False)
    self.pull_incr_op = self.pull.assign(self.pull * pull_incr)
    self.do_training = tf.placeholder(tf.float32, name="do_training")
    self.noise_param = tf.placeholder(tf.float32, name="noise_param")

    # Feeds for inputs, targets, outputs, losses, etc.
    self.input = []
    self.target = []
    for l in xrange(data_utils.forward_max + 1):
      self.input.append(tf.placeholder(tf.int32, name="inp{0}".format(l)))
      self.target.append(tf.placeholder(tf.int32, name="tgt{0}".format(l)))
    self.outputs = []
    self.losses = []
    self.grad_norms = []
    self.updates = []

    # Computation.
    inp0_shape = tf.shape(self.input[0])
    batch_size = inp0_shape[0]
    with tf.device("/cpu:0"):
      emb_weights = tf.get_variable(
          "embedding", [niclass, vec_size],
          initializer=tf.random_uniform_initializer(-1.7, 1.7))
      e0 = tf.scatter_update(emb_weights,
                             tf.constant(0, dtype=tf.int32, shape=[1]),
                             tf.zeros([1, vec_size]))

182
    adam = tf.train.AdamOptimizer(self.lr, epsilon=1e-4)
Lukasz Kaiser's avatar
Lukasz Kaiser committed
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225

    # Main graph creation loop, for every bin in data_utils.
    self.steps = []
    for length in sorted(list(set(data_utils.bins + [data_utils.forward_max]))):
      data_utils.print_out("Creating model for bin of length %d." % length)
      start_time = time.time()
      if length > data_utils.bins[0]:
        tf.get_variable_scope().reuse_variables()

      # Embed inputs and calculate mask.
      with tf.device("/cpu:0"):
        with tf.control_dependencies([e0]):
          embedded = [tf.nn.embedding_lookup(emb_weights, self.input[l])
                      for l in xrange(length)]
        # Mask to 0-out padding space in each step.
        imask = [check_for_zero(self.input[l]) for l in xrange(length)]
        omask = [check_for_zero(self.target[l]) for l in xrange(length)]
        mask = [1.0 - (imask[i] * omask[i]) for i in xrange(length)]
        mask = [tf.reshape(m, [-1, 1]) for m in mask]
        # Use a shifted mask for step scaling and concatenated for weights.
        shifted_mask = mask + [tf.zeros_like(mask[0])]
        scales = [shifted_mask[i] * (1.0 - shifted_mask[i+1])
                  for i in xrange(length)]
        scales = [tf.reshape(s, [-1, 1, 1, 1]) for s in scales]
        mask = tf.concat(1, mask[0:length])  # batch x length
        weights = mask
        # Add a height dimension to mask to use later for masking.
        mask = tf.reshape(mask, [-1, length, 1, 1])
        mask = tf.concat(2, [mask for _ in xrange(height)]) + tf.zeros(
            tf.pack([batch_size, length, height, nmaps]), dtype=tf.float32)

      # Start is a length-list of batch-by-nmaps tensors, reshape and concat.
      start = [tf.tanh(embedded[l]) for l in xrange(length)]
      start = [tf.reshape(start[l], [-1, 1, nmaps]) for l in xrange(length)]
      start = tf.reshape(tf.concat(1, start), [-1, length, 1, nmaps])

      # First image comes from start by applying one convolution and adding 0s.
      first = conv_linear(start, 1, 1, vec_size, nmaps, True, 0.0, "input")
      first = [first] + [tf.zeros(tf.pack([batch_size, length, 1, nmaps]),
                                  dtype=tf.float32) for _ in xrange(height - 1)]
      first = tf.concat(2, first)

      # Computation steps.
226
227
228
      keep_prob = 1.0 - self.do_training * (dropout * 8.0 / float(length))
      step = [tf.nn.dropout(first, keep_prob) * mask]
      act_noise_scale = act_noise * self.do_training * self.pull
Lukasz Kaiser's avatar
Lukasz Kaiser committed
229
230
231
232
233
234
235
236
237
      outputs = []
      for it in xrange(length):
        with tf.variable_scope("RX%d" % (it % rx_step)) as vs:
          if it >= rx_step:
            vs.reuse_variables()
          cur = step[it]
          # Do nconvs-many CGRU steps.
          for layer in xrange(nconvs):
            cur = conv_gru([], cur, kw, kh, nmaps, cutoff, "cgru_%d" % layer)
238
239
240
241
242
            cur *= mask
          outputs.append(tf.slice(cur, [0, 0, 0, 0], [-1, -1, 1, -1]))
          cur = tf.nn.dropout(cur, keep_prob)
          if act_noise > 0.00001:
            cur += tf.truncated_normal(tf.shape(cur)) * act_noise_scale
Lukasz Kaiser's avatar
Lukasz Kaiser committed
243
244
245
246
247
248
249
250
251
          step.append(cur * mask)

      self.steps.append([tf.reshape(s, [-1, length, height * nmaps])
                         for s in step])
      # Output is the n-th step output; n = current length, as in scales.
      output = tf.add_n([outputs[i] * scales[i] for i in xrange(length)])
      # Final convolution to get logits, list outputs.
      output = conv_linear(output, 1, 1, nmaps, noclass, True, 0.0, "output")
      output = tf.reshape(output, [-1, length, noclass])
252
253
254
255
      external_output = [tf.reshape(o, [-1, noclass])
                         for o in list(tf.split(1, length, output))]
      external_output = [tf.nn.softmax(o) for o in external_output]
      self.outputs.append(external_output)
Lukasz Kaiser's avatar
Lukasz Kaiser committed
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289

      # Calculate cross-entropy loss and normalize it.
      targets = tf.concat(1, [make_dense(self.target[l], noclass)
                              for l in xrange(length)])
      targets = tf.reshape(targets, [-1, noclass])
      xent = tf.reshape(tf.nn.softmax_cross_entropy_with_logits(
          tf.reshape(output, [-1, noclass]), targets), [-1, length])
      perp_loss = tf.reduce_sum(xent * weights)
      perp_loss /= tf.cast(batch_size, dtype=tf.float32)
      perp_loss /= length

      # Final loss: cross-entropy + shared parameter relaxation part.
      relax_dist, self.avg_op = relaxed_distance(rx_step)
      total_loss = perp_loss + relax_dist * self.pull
      self.losses.append(perp_loss)

      # Gradients and Adam update operation.
      if length == data_utils.bins[0] or (mode == 0 and
                                          length < data_utils.bins[-1] + 1):
        data_utils.print_out("Creating backward for bin of length %d." % length)
        params = tf.trainable_variables()
        grads = tf.gradients(total_loss, params)
        grads, norm = tf.clip_by_global_norm(grads, max_grad_norm)
        self.grad_norms.append(norm)
        for grad in grads:
          if isinstance(grad, tf.Tensor):
            grad += tf.truncated_normal(tf.shape(grad)) * self.noise_param
        update = adam.apply_gradients(zip(grads, params),
                                      global_step=self.global_step)
        self.updates.append(update)
      data_utils.print_out("Created model for bin of length %d in"
                           " %.2f s." % (length, time.time() - start_time))
    self.saver = tf.train.Saver(tf.all_variables())

290
291
  def step(self, sess, inp, target, do_backward, noise_param=None,
           get_steps=False):
Lukasz Kaiser's avatar
Lukasz Kaiser committed
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
    """Run a step of the network."""
    assert len(inp) == len(target)
    length = len(target)
    feed_in = {}
    feed_in[self.noise_param.name] = noise_param if noise_param else 0.0
    feed_in[self.do_training.name] = 1.0 if do_backward else 0.0
    feed_out = []
    index = len(data_utils.bins)
    if length < data_utils.bins[-1] + 1:
      index = data_utils.bins.index(length)
    if do_backward:
      feed_out.append(self.updates[index])
      feed_out.append(self.grad_norms[index])
    feed_out.append(self.losses[index])
    for l in xrange(length):
      feed_in[self.input[l].name] = inp[l]
    for l in xrange(length):
      feed_in[self.target[l].name] = target[l]
      feed_out.append(self.outputs[index][l])
311
312
313
    if get_steps:
      for l in xrange(length+1):
        feed_out.append(self.steps[index][l])
Lukasz Kaiser's avatar
Lukasz Kaiser committed
314
315
316
317
318
319
320
    res = sess.run(feed_out, feed_in)
    offset = 0
    norm = None
    if do_backward:
      offset = 2
      norm = res[1]
    outputs = res[offset + 1:offset + 1 + length]
321
    steps = res[offset + 1 + length:] if get_steps else None
Lukasz Kaiser's avatar
Lukasz Kaiser committed
322
    return res[offset], outputs, norm, steps