deep_speech_model.py 7.22 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Network structure for DeepSpeech model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from six.moves import xrange  # pylint: disable=redefined-builtin
import tensorflow as tf

# Supported rnn cells
SUPPORTED_RNNS = {
    "lstm": tf.keras.layers.LSTM,
    "rnn": tf.keras.layers.SimpleRNN,
    "gru": tf.keras.layers.GRU,
}

# Parameters for batch normalization
_MOMENTUM = 0.1
_EPSILON = 1e-05


def _conv_bn_layer(cnn_input, filters, kernel_size, strides, layer_id):
  """2D convolution + batch normalization layer.

  Args:
    cnn_input: input data for convolution layer.
    filters: an integer, number of output filters in the convolution.
    kernel_size: a tuple specifying the height and width of the 2D convolution
      window.
    strides: a tuple specifying the stride length of the convolution.
    layer_id: an integer specifying the layer index.

  Returns:
    tensor output from the current layer.
  """
  output = tf.keras.layers.Conv2D(
      filters=filters, kernel_size=kernel_size, strides=strides, padding="same",
      activation="linear", name="cnn_{}".format(layer_id))(cnn_input)
  output = tf.keras.layers.BatchNormalization(
      momentum=_MOMENTUM, epsilon=_EPSILON)(output)
  return output


def _rnn_layer(input_data, rnn_cell, rnn_hidden_size, layer_id, rnn_activation,
               is_batch_norm, is_bidirectional):
  """Defines a batch normalization + rnn layer.

  Args:
    input_data: input tensors for the current layer.
    rnn_cell: RNN cell instance to use.
    rnn_hidden_size: an integer for the dimensionality of the rnn output space.
    layer_id: an integer for the index of current layer.
    rnn_activation: activation function to use.
    is_batch_norm: a boolean specifying whether to perform batch normalization
      on input states.
    is_bidirectional: a boolean specifying whether the rnn layer is
      bi-directional.

  Returns:
    tensor output for the current layer.
  """
  if is_batch_norm:
    input_data = tf.keras.layers.BatchNormalization(
        momentum=_MOMENTUM, epsilon=_EPSILON)(input_data)
  rnn_layer = rnn_cell(
      rnn_hidden_size, activation=rnn_activation, return_sequences=True,
      name="rnn_{}".format(layer_id))
  if is_bidirectional:
    rnn_layer = tf.keras.layers.Bidirectional(rnn_layer, merge_mode="sum")

  return rnn_layer(input_data)


def _ctc_lambda_func(args):
  """Compute ctc loss."""
  # py2 needs explicit tf import for keras Lambda layer
  import tensorflow as tf

  y_pred, labels, input_length, label_length = args
  return tf.keras.backend.ctc_batch_cost(
      labels, y_pred, input_length, label_length)


def _calc_ctc_input_length(args):
  """Compute the actual input length after convolution for ctc_loss function.

  Basically, we need to know the scaled input_length after conv layers.
  new_input_length = old_input_length * ctc_time_steps / max_time_steps

  Args:
    args: the input args to compute ctc input length.

  Returns:
    ctc_input_length, which is required for ctc loss calculation.
  """
  # py2 needs explicit tf import for keras Lambda layer
  import tensorflow as tf

  input_length, input_data, y_pred = args
  max_time_steps = tf.shape(input_data)[1]
  ctc_time_steps = tf.shape(y_pred)[1]
  ctc_input_length = tf.multiply(
      tf.to_float(input_length), tf.to_float(ctc_time_steps))
  ctc_input_length = tf.to_int32(tf.floordiv(
      ctc_input_length, tf.to_float(max_time_steps)))
  return ctc_input_length


class DeepSpeech(tf.keras.models.Model):
  """DeepSpeech model."""

  def __init__(self, input_shape, num_rnn_layers, rnn_type, is_bidirectional,
               rnn_hidden_size, rnn_activation, num_classes, use_bias):
    """Initialize DeepSpeech model.

    Args:
      input_shape: an tuple to indicate the dimension of input dataset. It has
        the format of [time_steps(T), feature_bins(F), channel(1)]
      num_rnn_layers: an integer, the number of rnn layers. By default, it's 5.
      rnn_type: a string, one of the supported rnn cells: gru, rnn and lstm.
      is_bidirectional: a boolean to indicate if the rnn layer is bidirectional.
      rnn_hidden_size: an integer for the number of hidden states in each unit.
      rnn_activation: a string to indicate rnn activation function. It can be
        one of tanh and relu.
      num_classes: an integer, the number of output classes/labels.
      use_bias: a boolean specifying whether to use bias in the last fc layer.
    """
    # Input variables
    input_data = tf.keras.layers.Input(
        shape=input_shape, name="features")

    # Two cnn layers
    conv_layer_1 = _conv_bn_layer(
        input_data, filters=32, kernel_size=(41, 11), strides=(2, 2),
        layer_id=1)

    conv_layer_2 = _conv_bn_layer(
        conv_layer_1, filters=32, kernel_size=(21, 11), strides=(2, 1),
        layer_id=2)
    # output of conv_layer2 with the shape of
    # [batch_size (N), times (T), features (F), channels (C)]

    # RNN layers.
    # Convert the conv output to rnn input
    rnn_input = tf.keras.layers.TimeDistributed(tf.keras.layers.Flatten())(
        conv_layer_2)

    rnn_cell = SUPPORTED_RNNS[rnn_type]
    for layer_counter in xrange(num_rnn_layers):
      # No batch normalization on the first layer
      is_batch_norm = (layer_counter != 0)
      rnn_input = _rnn_layer(
          rnn_input, rnn_cell, rnn_hidden_size, layer_counter + 1,
          rnn_activation, is_batch_norm, is_bidirectional)

    # FC layer with batch norm
    fc_input = tf.keras.layers.BatchNormalization(
        momentum=_MOMENTUM, epsilon=_EPSILON)(rnn_input)

    y_pred = tf.keras.layers.Dense(num_classes, activation="softmax",
                                   use_bias=use_bias, name="y_pred")(fc_input)

    # For ctc loss
    labels = tf.keras.layers.Input(name="labels", shape=[None,], dtype="int32")
    label_length = tf.keras.layers.Input(
        name="label_length", shape=[1], dtype="int32")
    input_length = tf.keras.layers.Input(
        name="input_length", shape=[1], dtype="int32")
    ctc_input_length = tf.keras.layers.Lambda(
        _calc_ctc_input_length, output_shape=(1,), name="ctc_input_length")(
            [input_length, input_data, y_pred])

    # Keras doesn't currently support loss funcs with extra parameters
    # so CTC loss is implemented in a lambda layer
    ctc_loss = tf.keras.layers.Lambda(
        _ctc_lambda_func, output_shape=(1,), name="ctc_loss")(
            [y_pred, labels, ctc_input_length, label_length])

    super(DeepSpeech, self).__init__(
        inputs=[input_data, labels, input_length, label_length],
        outputs=[ctc_input_length, ctc_loss, y_pred])