train.py 20.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Train a progressive GAN model.

See https://arxiv.org/abs/1710.10196 for details about the model.

See https://github.com/tkarras/progressive_growing_of_gans for the original
theano implementation.
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os


from absl import logging
import numpy as np
import tensorflow as tf

import networks

tfgan = tf.contrib.gan


def make_train_sub_dir(stage_id, **kwargs):
  """Returns the log directory for training stage `stage_id`."""
  return os.path.join(kwargs['train_root_dir'], 'stage_{:05d}'.format(stage_id))


def make_resolution_schedule(**kwargs):
  """Returns an object of `ResolutionSchedule`."""
  return networks.ResolutionSchedule(
      start_resolutions=(kwargs['start_height'], kwargs['start_width']),
      scale_base=kwargs['scale_base'],
      num_resolutions=kwargs['num_resolutions'])


def get_stage_ids(**kwargs):
  """Returns a list of stage ids.

  Args:
    **kwargs: A dictionary of
        'train_root_dir': A string of root directory of training logs.
        'num_resolutions': An integer of number of progressive resolutions.
  """
  train_sub_dirs = [
      sub_dir for sub_dir in tf.gfile.ListDirectory(kwargs['train_root_dir'])
      if sub_dir.startswith('stage_')
  ]

  # If fresh start, start with start_stage_id = 0
  # If has been trained for n = len(train_sub_dirs) stages, start with the last
  # stage, i.e. start_stage_id = n - 1.
  start_stage_id = max(0, len(train_sub_dirs) - 1)

  return range(start_stage_id, get_total_num_stages(**kwargs))


def get_total_num_stages(**kwargs):
  """Returns total number of training stages."""
  return 2 * kwargs['num_resolutions'] - 1


def get_stage_info(stage_id, **kwargs):
  """Returns information for a training stage.

  Args:
    stage_id: An integer of training stage index.
    **kwargs: A dictionary of
        'num_resolutions': An integer of number of progressive resolutions.
        'stable_stage_num_images': An integer of number of training images in
            the stable stage.
        'transition_stage_num_images': An integer of number of training images
            in the transition stage.
        'total_num_images': An integer of total number of training images.

  Returns:
    A tuple of integers. The first entry is the number of blocks. The second
    entry is the accumulated total number of training images when stage
    `stage_id` is finished.

  Raises:
    ValueError: If `stage_id` is not in [0, total number of stages).
  """
  total_num_stages = get_total_num_stages(**kwargs)
  if not (stage_id >= 0 and stage_id < total_num_stages):
    raise ValueError(
        '`stage_id` must be in [0, {0}), but instead was {1}'.format(
            total_num_stages, stage_id))

  # Even stage_id: stable training stage.
  # Odd stage_id: transition training stage.
  num_blocks = (stage_id + 1) // 2 + 1
  num_images = ((stage_id // 2 + 1) * kwargs['stable_stage_num_images'] + (
      (stage_id + 1) // 2) * kwargs['transition_stage_num_images'])

  total_num_images = kwargs['total_num_images']
  if stage_id >= total_num_stages - 1:
    num_images = total_num_images
  num_images = min(num_images, total_num_images)

  return num_blocks, num_images


def make_latent_vectors(num, **kwargs):
  """Returns a batch of `num` random latent vectors."""
  return tf.random_normal([num, kwargs['latent_vector_size']], dtype=tf.float32)


def make_interpolated_latent_vectors(num_rows, num_columns, **kwargs):
  """Returns a batch of linearly interpolated latent vectors.

  Given two randomly generated latent vector za and zb, it can generate
  a row of `num_columns` interpolated latent vectors, i.e.
  [..., za + (zb - za) * i / (num_columns - 1), ...] where
  i = 0, 1, ..., `num_columns` - 1.

  This function produces `num_rows` such rows and returns a (flattened)
  batch of latent vectors with batch size `num_rows * num_columns`.

  Args:
    num_rows: An integer. Number of rows of interpolated latent vectors.
    num_columns: An integer. Number of interpolated latent vectors in each row.
    **kwargs: A dictionary of
        'latent_vector_size': An integer of latent vector size.

  Returns:
    A `Tensor` of shape `[num_rows * num_columns, latent_vector_size]`.
  """
  ans = []
  for _ in range(num_rows):
    z = tf.random_normal([2, kwargs['latent_vector_size']])
    r = tf.reshape(
        tf.to_float(tf.range(num_columns)) / (num_columns - 1), [-1, 1])
    dz = z[1] - z[0]
    ans.append(z[0] + tf.stack([dz] * num_columns) * r)
  return tf.concat(ans, axis=0)


def define_loss(gan_model, **kwargs):
  """Defines progressive GAN losses.

  The generator and discriminator both use wasserstein loss. In addition,
  a small penalty term is added to the discriminator loss to prevent it getting
  too large.

  Args:
    gan_model: A `GANModel` namedtuple.
    **kwargs: A dictionary of
        'gradient_penalty_weight': A float of gradient norm target for
            wasserstein loss.
        'gradient_penalty_target': A float of gradient penalty weight for
            wasserstein loss.
        'real_score_penalty_weight': A float of Additional penalty to keep
            the scores from drifting too far from zero.

  Returns:
    A `GANLoss` namedtuple.
  """
  gan_loss = tfgan.gan_loss(
      gan_model,
      generator_loss_fn=tfgan.losses.wasserstein_generator_loss,
      discriminator_loss_fn=tfgan.losses.wasserstein_discriminator_loss,
      gradient_penalty_weight=kwargs['gradient_penalty_weight'],
      gradient_penalty_target=kwargs['gradient_penalty_target'],
      gradient_penalty_epsilon=0.0)

  real_score_penalty = tf.reduce_mean(
      tf.square(gan_model.discriminator_real_outputs))
  tf.summary.scalar('real_score_penalty', real_score_penalty)

  return gan_loss._replace(
      discriminator_loss=(
          gan_loss.discriminator_loss +
          kwargs['real_score_penalty_weight'] * real_score_penalty))


def define_train_ops(gan_model, gan_loss, **kwargs):
  """Defines progressive GAN train ops.

  Args:
    gan_model: A `GANModel` namedtuple.
    gan_loss: A `GANLoss` namedtuple.
    **kwargs: A dictionary of
        'adam_beta1': A float of Adam optimizer beta1.
        'adam_beta2': A float of Adam optimizer beta2.
        'generator_learning_rate': A float of generator learning rate.
        'discriminator_learning_rate': A float of discriminator learning rate.

  Returns:
    A tuple of `GANTrainOps` namedtuple and a list variables tracking the state
    of optimizers.
  """
  with tf.variable_scope('progressive_gan_train_ops') as var_scope:
    beta1, beta2 = kwargs['adam_beta1'], kwargs['adam_beta2']
    gen_opt = tf.train.AdamOptimizer(kwargs['generator_learning_rate'], beta1,
                                     beta2)
    dis_opt = tf.train.AdamOptimizer(kwargs['discriminator_learning_rate'],
                                     beta1, beta2)
    gan_train_ops = tfgan.gan_train_ops(gan_model, gan_loss, gen_opt, dis_opt)
  return gan_train_ops, tf.get_collection(
      tf.GraphKeys.GLOBAL_VARIABLES, scope=var_scope.name)


def add_generator_smoothing_ops(generator_ema, gan_model, gan_train_ops):
  """Adds generator smoothing ops."""
  with tf.control_dependencies([gan_train_ops.generator_train_op]):
    new_generator_train_op = generator_ema.apply(gan_model.generator_variables)

  gan_train_ops = gan_train_ops._replace(
      generator_train_op=new_generator_train_op)
  generator_vars_to_restore = generator_ema.variables_to_restore(
      gan_model.generator_variables)
  return gan_train_ops, generator_vars_to_restore


def build_model(stage_id, real_images, **kwargs):
  """Builds progressive GAN model.

  Args:
    stage_id: An integer of training stage index.
    real_images: A 4D `Tensor` of NHWC format.
    **kwargs: A dictionary of
        'batch_size': Number of training images in each minibatch.
        'start_height': An integer of start image height.
        'start_width': An integer of start image width.
        'scale_base': An integer of resolution multiplier.
        'num_resolutions': An integer of number of progressive resolutions.
        'stable_stage_num_images': An integer of number of training images in
            the stable stage.
        'transition_stage_num_images': An integer of number of training images
            in the transition stage.
        'total_num_images': An integer of total number of training images.
        'kernel_size': Convolution kernel size.
        'colors': Number of image channels.
        'to_rgb_use_tanh_activation': Whether to apply tanh activation when
            output rgb.
        'fmap_base': Base number of filters.
        'fmap_decay': Decay of number of filters.
        'fmap_max': Max number of filters.
        'latent_vector_size': An integer of latent vector size.
        'gradient_penalty_weight': A float of gradient norm target for
            wasserstein loss.
        'gradient_penalty_target': A float of gradient penalty weight for
            wasserstein loss.
        'real_score_penalty_weight': A float of Additional penalty to keep
            the scores from drifting too far from zero.
        'adam_beta1': A float of Adam optimizer beta1.
        'adam_beta2': A float of Adam optimizer beta2.
        'generator_learning_rate': A float of generator learning rate.
        'discriminator_learning_rate': A float of discriminator learning rate.

  Returns:
    An inernal object that wraps all information about the model.
  """
  batch_size = kwargs['batch_size']
  kernel_size = kwargs['kernel_size']
  colors = kwargs['colors']
  resolution_schedule = make_resolution_schedule(**kwargs)

  num_blocks, num_images = get_stage_info(stage_id, **kwargs)

  global_step = tf.train.get_or_create_global_step()
  current_image_id = global_step * batch_size
  tf.summary.scalar('current_image_id', current_image_id)

  progress = networks.compute_progress(
      current_image_id, kwargs['stable_stage_num_images'],
      kwargs['transition_stage_num_images'], num_blocks)
  tf.summary.scalar('progress', progress)

  real_images = networks.blend_images(
      real_images, progress, resolution_schedule, num_blocks=num_blocks)

  def _num_filters_fn(block_id):
    """Computes number of filters of block `block_id`."""
    return networks.num_filters(block_id, kwargs['fmap_base'],
                                kwargs['fmap_decay'], kwargs['fmap_max'])

  def _generator_fn(z):
    """Builds generator network."""
    return networks.generator(
        z,
        progress,
        _num_filters_fn,
        resolution_schedule,
        num_blocks=num_blocks,
        kernel_size=kernel_size,
        colors=colors,
        to_rgb_activation=(tf.tanh
                           if kwargs['to_rgb_use_tanh_activation'] else None))

  def _discriminator_fn(x):
    """Builds discriminator network."""
    return networks.discriminator(
        x,
        progress,
        _num_filters_fn,
        resolution_schedule,
        num_blocks=num_blocks,
        kernel_size=kernel_size)

  ########## Define model.
  z = make_latent_vectors(batch_size, **kwargs)

  gan_model = tfgan.gan_model(
      generator_fn=lambda z: _generator_fn(z)[0],
      discriminator_fn=lambda x, unused_z: _discriminator_fn(x)[0],
      real_data=real_images,
      generator_inputs=z)

  ########## Define loss.
  gan_loss = define_loss(gan_model, **kwargs)

  ########## Define train ops.
  gan_train_ops, optimizer_var_list = define_train_ops(gan_model, gan_loss,
                                                       **kwargs)

  ########## Generator smoothing.
  generator_ema = tf.train.ExponentialMovingAverage(decay=0.999)
  gan_train_ops, generator_vars_to_restore = add_generator_smoothing_ops(
      generator_ema, gan_model, gan_train_ops)

  class Model(object):
    pass

  model = Model()
  model.resolution_schedule = resolution_schedule
  model.stage_id = stage_id
  model.num_images = num_images
  model.num_blocks = num_blocks
  model.global_step = global_step
  model.current_image_id = current_image_id
  model.progress = progress
  model.num_filters_fn = _num_filters_fn
  model.generator_fn = _generator_fn
  model.discriminator_fn = _discriminator_fn
  model.gan_model = gan_model
  model.gan_loss = gan_loss
  model.gan_train_ops = gan_train_ops
  model.optimizer_var_list = optimizer_var_list
  model.generator_ema = generator_ema
  model.generator_vars_to_restore = generator_vars_to_restore
  return model


def make_var_scope_custom_getter_for_ema(ema):
  """Makes variable scope custom getter."""
  def _custom_getter(getter, name, *args, **kwargs):
    var = getter(name, *args, **kwargs)
    ema_var = ema.average(var)
    return ema_var if ema_var else var
  return _custom_getter


def add_model_summaries(model, **kwargs):
  """Adds model summaries.

  This function adds several useful summaries during training:
  - fake_images: A grid of fake images based on random latent vectors.
  - interp_images: A grid of fake images based on interpolated latent vectors.
  - real_images_blend: A grid of real images.
  - summaries for `gan_model` losses, variable distributions etc.

  Args:
    model: An model object having all information of progressive GAN model,
        e.g. the return of build_model().
    **kwargs: A dictionary of
      'batch_size': Number of training images in each minibatch.
      'fake_grid_size': The fake image grid size for summaries.
      'interp_grid_size': The latent space interpolated image grid size for
          summaries.
      'colors': Number of image channels.
      'latent_vector_size': An integer of latent vector size.
  """
  fake_grid_size = kwargs['fake_grid_size']
  interp_grid_size = kwargs['interp_grid_size']
  colors = kwargs['colors']

  image_shape = list(model.resolution_schedule.final_resolutions)

  fake_batch_size = fake_grid_size**2
  fake_images_shape = [fake_batch_size] + image_shape + [colors]

  interp_batch_size = interp_grid_size**2
  interp_images_shape = [interp_batch_size] + image_shape + [colors]

  # When making prediction, use the ema smoothed generator vars.
  with tf.variable_scope(
      model.gan_model.generator_scope,
      reuse=True,
      custom_getter=make_var_scope_custom_getter_for_ema(model.generator_ema)):
    z_fake = make_latent_vectors(fake_batch_size, **kwargs)
    fake_images = model.gan_model.generator_fn(z_fake)
    fake_images.set_shape(fake_images_shape)

    z_interp = make_interpolated_latent_vectors(interp_grid_size,
                                                interp_grid_size, **kwargs)
    interp_images = model.gan_model.generator_fn(z_interp)
    interp_images.set_shape(interp_images_shape)

  tf.summary.image(
      'fake_images',
      tfgan.eval.eval_utils.image_grid(
          fake_images,
          grid_shape=[fake_grid_size] * 2,
          image_shape=image_shape,
          num_channels=colors),
      max_outputs=1)

  tf.summary.image(
      'interp_images',
      tfgan.eval.eval_utils.image_grid(
          interp_images,
          grid_shape=[interp_grid_size] * 2,
          image_shape=image_shape,
          num_channels=colors),
      max_outputs=1)

  real_grid_size = int(np.sqrt(kwargs['batch_size']))
  tf.summary.image(
      'real_images_blend',
      tfgan.eval.eval_utils.image_grid(
          model.gan_model.real_data[:real_grid_size**2],
          grid_shape=(real_grid_size, real_grid_size),
          image_shape=image_shape,
          num_channels=colors),
      max_outputs=1)

  tfgan.eval.add_gan_model_summaries(model.gan_model)


def make_scaffold(stage_id, optimizer_var_list, **kwargs):
  """Makes a custom scaffold.

  The scaffold
  - restores variables from the last training stage.
  - initializes new variables in the new block.

  Args:
    stage_id: An integer of stage id.
    optimizer_var_list: A list of optimizer variables.
    **kwargs: A dictionary of
        'train_root_dir': A string of root directory of training logs.
        'num_resolutions': An integer of number of progressive resolutions.
        'stable_stage_num_images': An integer of number of training images in
            the stable stage.
        'transition_stage_num_images': An integer of number of training images
            in the transition stage.
        'total_num_images': An integer of total number of training images.

  Returns:
    A `Scaffold` object.
  """
  # Holds variables that from the previous stage and need to be restored.
  restore_var_list = []
  prev_ckpt = None
  curr_ckpt = tf.train.latest_checkpoint(make_train_sub_dir(stage_id, **kwargs))
  if stage_id > 0 and curr_ckpt is None:
    prev_ckpt = tf.train.latest_checkpoint(
        make_train_sub_dir(stage_id - 1, **kwargs))

    num_blocks, _ = get_stage_info(stage_id, **kwargs)
    prev_num_blocks, _ = get_stage_info(stage_id - 1, **kwargs)

    # Holds variables created in the new block of the current stage. If the
    # current stage is a stable stage (except the initial stage), this list
    # will be empty.
    new_block_var_list = []
    for block_id in range(prev_num_blocks + 1, num_blocks + 1):
      new_block_var_list.extend(
          tf.get_collection(
              tf.GraphKeys.GLOBAL_VARIABLES,
              scope='.*/{}/'.format(networks.block_name(block_id))))

    # Every variables that are 1) not for optimizers and 2) from the new block
    # need to be restored.
    restore_var_list = [
        var for var in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
        if var not in set(optimizer_var_list + new_block_var_list)
    ]

  # Add saver op to graph. This saver is used to restore variables from the
  # previous stage.
  saver_for_restore = tf.train.Saver(
      var_list=restore_var_list, allow_empty=True)
  # Add the op to graph that initializes all global variables.
  init_op = tf.global_variables_initializer()

  def _init_fn(unused_scaffold, sess):
    # First initialize every variables.
    sess.run(init_op)
    logging.info('\n'.join([var.name for var in restore_var_list]))
    # Then overwrite variables saved in previous stage.
    if prev_ckpt is not None:
      saver_for_restore.restore(sess, prev_ckpt)

  # Use a dummy init_op here as all initialization is done in init_fn.
  return tf.train.Scaffold(init_op=tf.constant([]), init_fn=_init_fn)


def make_status_message(model):
  """Makes a string `Tensor` of training status."""
  return tf.string_join(
      [
          'Starting train step: ',
          tf.as_string(model.global_step), ', current_image_id: ',
          tf.as_string(model.current_image_id), ', progress: ',
          tf.as_string(model.progress), ', num_blocks: {}'.format(
              model.num_blocks)
      ],
      name='status_message')


def train(model, **kwargs):
  """Trains progressive GAN for stage `stage_id`.

  Args:
    model: An model object having all information of progressive GAN model,
        e.g. the return of build_model().
    **kwargs: A dictionary of
        'train_root_dir': A string of root directory of training logs.
        'master': Name of the TensorFlow master to use.
        'task': The Task ID. This value is used when training with multiple
            workers to identify each worker.
        'save_summaries_num_images': Save summaries in this number of images.
  Returns:
    None.
  """
  batch_size = kwargs['batch_size']

  logging.info('stage_id=%d, num_blocks=%d, num_images=%d', model.stage_id,
               model.num_blocks, model.num_images)

  scaffold = make_scaffold(model.stage_id, model.optimizer_var_list, **kwargs)

  tfgan.gan_train(
      model.gan_train_ops,
      logdir=make_train_sub_dir(model.stage_id, **kwargs),
      get_hooks_fn=tfgan.get_sequential_train_hooks(tfgan.GANTrainSteps(1, 1)),
      hooks=[
          tf.train.StopAtStepHook(last_step=model.num_images // batch_size),
          tf.train.LoggingTensorHook(
              [make_status_message(model)], every_n_iter=10)
      ],
      master=kwargs['master'],
      is_chief=(kwargs['task'] == 0),
      scaffold=scaffold,
      save_checkpoint_secs=600,
      save_summaries_steps=(kwargs['save_summaries_num_images'] // batch_size))