networks_test.py 3.16 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for tfgan.examples.networks.networks."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf
22
import networks
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51


class Pix2PixTest(tf.test.TestCase):

  def test_generator_run(self):
    img_batch = tf.zeros([3, 128, 128, 3])
    model_output = networks.generator(img_batch)
    with self.test_session() as sess:
      sess.run(tf.global_variables_initializer())
      sess.run(model_output)

  def test_generator_graph(self):
    for shape in ([4, 32, 32], [3, 128, 128], [2, 80, 400]):
      tf.reset_default_graph()
      img = tf.ones(shape + [3])
      output_imgs = networks.generator(img)

      self.assertAllEqual(shape + [3], output_imgs.shape.as_list())

  def test_generator_graph_unknown_batch_dim(self):
    img = tf.placeholder(tf.float32, shape=[None, 32, 32, 3])
    output_imgs = networks.generator(img)

    self.assertAllEqual([None, 32, 32, 3], output_imgs.shape.as_list())

  def test_generator_invalid_input(self):
    with self.assertRaisesRegexp(ValueError, 'must have rank 4'):
      networks.generator(tf.zeros([28, 28, 3]))

52
53
54
55
56
57
58
59
60
61
62
63
64
  def test_generator_run_multi_channel(self):
    img_batch = tf.zeros([3, 128, 128, 5])
    model_output = networks.generator(img_batch)
    with self.test_session() as sess:
      sess.run(tf.global_variables_initializer())
      sess.run(model_output)

  def test_generator_invalid_channels(self):
    with self.assertRaisesRegexp(
        ValueError, 'Last dimension shape must be known but is None'):
      img = tf.placeholder(tf.float32, shape=[4, 32, 32, None])
      networks.generator(img)

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
  def test_discriminator_run(self):
    img_batch = tf.zeros([3, 70, 70, 3])
    disc_output = networks.discriminator(img_batch)
    with self.test_session() as sess:
      sess.run(tf.global_variables_initializer())
      sess.run(disc_output)

  def test_discriminator_graph(self):
    # Check graph construction for a number of image size/depths and batch
    # sizes.
    for batch_size, patch_size in zip([3, 6], [70, 128]):
      tf.reset_default_graph()
      img = tf.ones([batch_size, patch_size, patch_size, 3])
      disc_output = networks.discriminator(img)

      self.assertEqual(2, disc_output.shape.ndims)
      self.assertEqual(batch_size, disc_output.shape.as_list()[0])

  def test_discriminator_invalid_input(self):
    with self.assertRaisesRegexp(ValueError, 'Shape must be rank 4'):
      networks.discriminator(tf.zeros([28, 28, 3]))


if __name__ == '__main__':
  tf.test.main()