inference_demo_test.py 3.42 KB
Newer Older
1
2
3
4
5
6
7
"""Tests for CycleGAN inference demo."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
8
from absl import logging
9
10
import numpy as np
import PIL
11

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import tensorflow as tf

import inference_demo
import train

FLAGS = tf.flags.FLAGS
mock = tf.test.mock
tfgan = tf.contrib.gan


def _basenames_from_glob(file_glob):
  return [os.path.basename(file_path) for file_path in tf.gfile.Glob(file_glob)]


class InferenceDemoTest(tf.test.TestCase):

  def setUp(self):
    self._export_dir = os.path.join(FLAGS.test_tmpdir, 'export')
    self._ckpt_path = os.path.join(self._export_dir, 'model.ckpt')
    self._image_glob = os.path.join(
        FLAGS.test_srcdir,
        'google3/third_party/tensorflow_models/gan/cyclegan/testdata', '*.jpg')
    self._genx_dir = os.path.join(FLAGS.test_tmpdir, 'genx')
    self._geny_dir = os.path.join(FLAGS.test_tmpdir, 'geny')

  @mock.patch.object(tfgan, 'gan_train', autospec=True)
  def testTrainingAndInferenceGraphsAreCompatible(self, unused_mock_gan_train):
    # Training and inference graphs can get out of sync if changes are made
    # to one but not the other. This test will keep them in sync.

    # Save the training graph
    train_sess = tf.Session()
    FLAGS.image_set_x_file_pattern = '/tmp/x/*.jpg'
    FLAGS.image_set_y_file_pattern = '/tmp/y/*.jpg'
    FLAGS.batch_size = 3
    FLAGS.patch_size = 128
    FLAGS.generator_lr = 0.02
    FLAGS.discriminator_lr = 0.3
    FLAGS.train_log_dir = self._export_dir
    FLAGS.master = 'master'
    FLAGS.task = 0
    FLAGS.cycle_consistency_loss_weight = 2.0
    FLAGS.max_number_of_steps = 1
    train.main(None)
    init_op = tf.global_variables_initializer()
    train_sess.run(init_op)
    train_saver = tf.train.Saver()
    train_saver.save(train_sess, save_path=self._ckpt_path)

    # Create inference graph
    tf.reset_default_graph()
    FLAGS.patch_dim = FLAGS.patch_size
64
    logging.info('dir_path: %s', os.listdir(self._export_dir))
65
66
67
68
69
70
71
    FLAGS.checkpoint_path = self._ckpt_path
    FLAGS.image_set_x_glob = self._image_glob
    FLAGS.image_set_y_glob = self._image_glob
    FLAGS.generated_x_dir = self._genx_dir
    FLAGS.generated_y_dir = self._geny_dir

    inference_demo.main(None)
72
    logging.info('gen x: %s', os.listdir(self._genx_dir))
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

    # Check that the image names match
    self.assertSetEqual(
        set(_basenames_from_glob(FLAGS.image_set_x_glob)),
        set(os.listdir(FLAGS.generated_y_dir)))
    self.assertSetEqual(
        set(_basenames_from_glob(FLAGS.image_set_y_glob)),
        set(os.listdir(FLAGS.generated_x_dir)))

    # Check that each image in the directory looks as expected
    for directory in [FLAGS.generated_x_dir, FLAGS.generated_x_dir]:
      for base_name in os.listdir(directory):
        image_path = os.path.join(directory, base_name)
        self.assertRealisticImage(image_path)

  def assertRealisticImage(self, image_path):
89
    logging.info('Testing %s for realism.', image_path)
90
91
92
93
94
95
96
97
98
99
100
101
    # If the normalization is off or forgotten, then the generated image is
    # all one pixel value. This tests that different pixel values are achieved.
    input_np = np.asarray(PIL.Image.open(image_path))
    self.assertEqual(len(input_np.shape), 3)
    self.assertGreaterEqual(input_np.shape[0], 50)
    self.assertGreaterEqual(input_np.shape[1], 50)
    self.assertGreater(np.mean(input_np), 20)
    self.assertGreater(np.var(input_np), 100)


if __name__ == '__main__':
  tf.test.main()