inference_demo.py 4.89 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
r"""Demo that makes inference requests against a running inference server."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os


24
25
from absl import app
from absl import flags
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import numpy as np
import PIL
import tensorflow as tf

import data_provider
import networks

tfgan = tf.contrib.gan

flags.DEFINE_string('checkpoint_path', '',
                    'CycleGAN checkpoint path created by train.py. '
                    '(e.g. "/mylogdir/model.ckpt-18442")')

flags.DEFINE_string(
    'image_set_x_glob', '',
    'Optional: Glob path to images of class X to feed through the CycleGAN.')

flags.DEFINE_string(
    'image_set_y_glob', '',
    'Optional: Glob path to images of class Y to feed through the CycleGAN.')

flags.DEFINE_string(
    'generated_x_dir', '/tmp/generated_x/',
    'If image_set_y_glob is defined, where to output the generated X '
    'images.')

flags.DEFINE_string(
    'generated_y_dir', '/tmp/generated_y/',
    'If image_set_x_glob is defined, where to output the generated Y '
    'images.')

flags.DEFINE_integer('patch_dim', 128,
                     'The patch size of images that was used in train.py.')

FLAGS = flags.FLAGS


def _make_dir_if_not_exists(dir_path):
  """Make a directory if it does not exist."""
  if not tf.gfile.Exists(dir_path):
    tf.gfile.MakeDirs(dir_path)


def _file_output_path(dir_path, input_file_path):
  """Create output path for an individual file."""
  return os.path.join(dir_path, os.path.basename(input_file_path))


def make_inference_graph(model_name, patch_dim):
  """Build the inference graph for either the X2Y or Y2X GAN.

  Args:
    model_name: The var scope name 'ModelX2Y' or 'ModelY2X'.
    patch_dim: An integer size of patches to feed to the generator.

  Returns:
    Tuple of (input_placeholder, generated_tensor).
  """
  input_hwc_pl = tf.placeholder(tf.float32, [None, None, 3])

  # Expand HWC to NHWC
  images_x = tf.expand_dims(
      data_provider.full_image_to_patch(input_hwc_pl, patch_dim), 0)

  with tf.variable_scope(model_name):
    with tf.variable_scope('Generator'):
      generated = networks.generator(images_x)
  return input_hwc_pl, generated


def export(sess, input_pl, output_tensor, input_file_pattern, output_dir):
  """Exports inference outputs to an output directory.

  Args:
    sess: tf.Session with variables already loaded.
    input_pl: tf.Placeholder for input (HWC format).
    output_tensor: Tensor for generated outut images.
    input_file_pattern: Glob file pattern for input images.
    output_dir: Output directory.
  """
  if output_dir:
    _make_dir_if_not_exists(output_dir)

  if input_file_pattern:
    for file_path in tf.gfile.Glob(input_file_pattern):
      # Grab a single image and run it through inference
      input_np = np.asarray(PIL.Image.open(file_path))
      output_np = sess.run(output_tensor, feed_dict={input_pl: input_np})
      image_np = data_provider.undo_normalize_image(output_np)
      output_path = _file_output_path(output_dir, file_path)
      PIL.Image.fromarray(image_np).save(output_path)


def _validate_flags():
  flags.register_validator('checkpoint_path', bool,
                           'Must provide `checkpoint_path`.')
  flags.register_validator(
      'generated_x_dir',
      lambda x: False if (FLAGS.image_set_y_glob and not x) else True,
      'Must provide `generated_x_dir`.')
  flags.register_validator(
      'generated_y_dir',
      lambda x: False if (FLAGS.image_set_x_glob and not x) else True,
      'Must provide `generated_y_dir`.')


def main(_):
  _validate_flags()
  images_x_hwc_pl, generated_y = make_inference_graph('ModelX2Y',
                                                      FLAGS.patch_dim)
  images_y_hwc_pl, generated_x = make_inference_graph('ModelY2X',
                                                      FLAGS.patch_dim)

  # Restore all the variables that were saved in the checkpoint.
  saver = tf.train.Saver()
  with tf.Session() as sess:
    saver.restore(sess, FLAGS.checkpoint_path)

    export(sess, images_x_hwc_pl, generated_y, FLAGS.image_set_x_glob,
           FLAGS.generated_y_dir)
    export(sess, images_y_hwc_pl, generated_x, FLAGS.image_set_y_glob,
           FLAGS.generated_x_dir)


if __name__ == '__main__':
151
  app.run()