"slim/models/model_factory.py" did not exist on "a5594334fdfe536446d07b156a14369970ab7c33"
segmentation_metrics.py 10.1 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Metrics for segmentation."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
16

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
17
18
19
import tensorflow as tf

from official.vision.evaluation import iou
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
20
21
from official.vision.ops import box_ops
from official.vision.ops import spatial_transform_ops
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53


class MeanIoU(tf.keras.metrics.MeanIoU):
  """Mean IoU metric for semantic segmentation.

  This class utilizes tf.keras.metrics.MeanIoU to perform batched mean iou when
  both input images and groundtruth masks are resized to the same size
  (rescale_predictions=False). It also computes mean iou on groundtruth original
  sizes, in which case, each prediction is rescaled back to the original image
  size.
  """

  def __init__(
      self, num_classes, rescale_predictions=False, name=None, dtype=None):
    """Constructs Segmentation evaluator class.

    Args:
      num_classes: `int`, number of classes.
      rescale_predictions: `bool`, whether to scale back prediction to original
        image sizes. If True, y_true['image_info'] is used to rescale
        predictions.
      name: `str`, name of the metric instance..
      dtype: data type of the metric result.
    """
    self._rescale_predictions = rescale_predictions
    super().__init__(num_classes=num_classes, name=name, dtype=dtype)

  def update_state(self, y_true, y_pred):
    """Updates metric state.

    Args:
      y_true: `dict`, dictionary with the following name, and key values.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
54
55
        - masks: [batch, height, width, 1], groundtruth masks.
        - valid_masks: [batch, height, width, 1], valid elements in the mask.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
56
57
58
59
60
61
62
        - image_info: [batch, 4, 2], a tensor that holds information about
          original and preprocessed images. Each entry is in the format of
          [[original_height, original_width], [input_height, input_width],
          [y_scale, x_scale], [y_offset, x_offset]], where [desired_height,
          desired_width] is the actual scaled image size, and [y_scale, x_scale]
          is the scaling factor, which is the ratio of scaled dimension /
          original dimension.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
63
      y_pred: Tensor [batch, height_p, width_p, num_classes], predicated masks.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
64
65
66
67
68
69
70
71
72
73
74
75
76
77
    """
    predictions = y_pred
    masks = y_true['masks']
    valid_masks = y_true['valid_masks']
    images_info = y_true['image_info']

    if isinstance(predictions, tuple) or isinstance(predictions, list):
      predictions = tf.concat(predictions, axis=0)
      masks = tf.concat(masks, axis=0)
      valid_masks = tf.concat(valid_masks, axis=0)
      images_info = tf.concat(images_info, axis=0)

    # Ignore mask elements is set to zero for argmax op.
    masks = tf.where(valid_masks, masks, tf.zeros_like(masks))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
78
    masks_size = tf.shape(masks)[1:3]
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
79
80

    if self._rescale_predictions:
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
81
82
83
84
85
86
87
88
89
90
      # Scale back predictions to original image shapes and pad to mask size.
      # Note: instead of cropping the masks to image shape (dynamic), here we
      # pad the rescaled predictions to mask size (fixed). And update the
      # valid_masks to mask out the pixels outside the original image shape.
      predictions, image_shape_masks = _rescale_and_pad_predictions(
          predictions, images_info, output_size=masks_size)
      # Only the area within the original image shape is valid.
      # (batch_size, height, width, 1)
      valid_masks = tf.cast(valid_masks, tf.bool) & tf.expand_dims(
          image_shape_masks, axis=-1)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
91
92
    else:
      predictions = tf.image.resize(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
93
          predictions, masks_size, method=tf.image.ResizeMethod.BILINEAR)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
94

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
95
96
97
98
99
100
101
102
103
    predictions = tf.argmax(predictions, axis=3)
    flatten_predictions = tf.reshape(predictions, shape=[-1])
    flatten_masks = tf.reshape(masks, shape=[-1])
    flatten_valid_masks = tf.reshape(valid_masks, shape=[-1])

    super().update_state(
        y_true=flatten_masks,
        y_pred=flatten_predictions,
        sample_weight=tf.cast(flatten_valid_masks, tf.float32))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135


class PerClassIoU(iou.PerClassIoU):
  """Per Class IoU metric for semantic segmentation.

  This class utilizes iou.PerClassIoU to perform batched per class
  iou when both input images and groundtruth masks are resized to the same size
  (rescale_predictions=False). It also computes per class iou on groundtruth
  original sizes, in which case, each prediction is rescaled back to the
  original image size.
  """

  def __init__(
      self, num_classes, rescale_predictions=False, name=None, dtype=None):
    """Constructs Segmentation evaluator class.

    Args:
      num_classes: `int`, number of classes.
      rescale_predictions: `bool`, whether to scale back prediction to original
        image sizes. If True, y_true['image_info'] is used to rescale
        predictions.
      name: `str`, name of the metric instance..
      dtype: data type of the metric result.
    """
    self._rescale_predictions = rescale_predictions
    super().__init__(num_classes=num_classes, name=name, dtype=dtype)

  def update_state(self, y_true, y_pred):
    """Updates metric state.

    Args:
      y_true: `dict`, dictionary with the following name, and key values.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
136
137
        - masks: [batch, height, width, 1], groundtruth masks.
        - valid_masks: [batch, height, width, 1], valid elements in the mask.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
138
139
140
141
142
143
144
        - image_info: [batch, 4, 2], a tensor that holds information about
          original and preprocessed images. Each entry is in the format of
          [[original_height, original_width], [input_height, input_width],
          [y_scale, x_scale], [y_offset, x_offset]], where [desired_height,
          desired_width] is the actual scaled image size, and [y_scale, x_scale]
          is the scaling factor, which is the ratio of scaled dimension /
          original dimension.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
145
      y_pred: Tensor [batch, height_p, width_p, num_classes], predicated masks.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
146
147
148
149
150
151
152
153
154
155
156
157
158
159
    """
    predictions = y_pred
    masks = y_true['masks']
    valid_masks = y_true['valid_masks']
    images_info = y_true['image_info']

    if isinstance(predictions, tuple) or isinstance(predictions, list):
      predictions = tf.concat(predictions, axis=0)
      masks = tf.concat(masks, axis=0)
      valid_masks = tf.concat(valid_masks, axis=0)
      images_info = tf.concat(images_info, axis=0)

    # Ignore mask elements is set to zero for argmax op.
    masks = tf.where(valid_masks, masks, tf.zeros_like(masks))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
160
    masks_size = tf.shape(masks)[1:3]
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
161
162

    if self._rescale_predictions:
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
163
164
165
166
167
168
169
170
171
172
      # Scale back predictions to original image shapes and pad to mask size.
      # Note: instead of cropping the masks to image shape (dynamic), here we
      # pad the rescaled predictions to mask size (fixed). And update the
      # valid_masks to mask out the pixels outside the original image shape.
      predictions, image_shape_masks = _rescale_and_pad_predictions(
          predictions, images_info, output_size=masks_size)
      # Only the area within the original image shape is valid.
      # (batch_size, height, width, 1)
      valid_masks = tf.cast(valid_masks, tf.bool) & tf.expand_dims(
          image_shape_masks, axis=-1)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
173
174
    else:
      predictions = tf.image.resize(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
          predictions, masks_size, method=tf.image.ResizeMethod.BILINEAR)

    predictions = tf.argmax(predictions, axis=3)
    flatten_predictions = tf.reshape(predictions, shape=[-1])
    flatten_masks = tf.reshape(masks, shape=[-1])
    flatten_valid_masks = tf.reshape(valid_masks, shape=[-1])

    super().update_state(
        y_true=flatten_masks,
        y_pred=flatten_predictions,
        sample_weight=tf.cast(flatten_valid_masks, tf.float32))


def _rescale_and_pad_predictions(predictions, images_info, output_size):
  """Scales back predictions to original image shapes and pads to output size.

  Args:
    predictions: A tensor in shape [batch, height, width, num_classes] which
      stores the model predictions.
    images_info: A tensor in shape [batch, 4, 2] that holds information about
      original and preprocessed images. Each entry is in the format of
      [[original_height, original_width], [input_height, input_width], [y_scale,
      x_scale], [y_offset, x_offset]], where [desired_height, desired_width] is
      the actual scaled image size, and [y_scale, x_scale] is the scaling
      factor, which is the ratio of scaled dimension / original dimension.
    output_size: A list/tuple/tensor stores the size of the padded output in
      [output_height, output_width].

  Returns:
    predictions: A tensor in shape [batch, output_height, output_width,
      num_classes] which stores the rescaled and padded predictions.
    image_shape_masks: A bool tensor in shape [batch, output_height,
      output_width] where the pixels inside the original image shape are true,
      otherwise false.
  """
  # (batch_size, 2)
  image_shape = tf.cast(images_info[:, 0, :], tf.int32)
  desired_size = tf.cast(images_info[:, 1, :], tf.float32)
  image_scale = tf.cast(images_info[:, 2, :], tf.float32)
  offset = tf.cast(images_info[:, 3, :], tf.int32)
  rescale_size = tf.cast(tf.math.ceil(desired_size / image_scale), tf.int32)

  # Rescale the predictions, then crop to the original image shape and
  # finally pad zeros to match the mask size.
  predictions = (
      spatial_transform_ops.bilinear_resize_with_crop_and_pad(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
221
          predictions,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
          rescale_size,
          crop_offset=offset,
          crop_size=image_shape,
          output_size=output_size))

  # (batch_size, 2)
  y0_x0 = tf.broadcast_to(
      tf.constant([[0, 0]], dtype=image_shape.dtype), tf.shape(image_shape))
  # (batch_size, 4)
  image_shape_bbox = tf.concat([y0_x0, image_shape], axis=1)
  # (batch_size, height, width)
  image_shape_masks = box_ops.bbox2mask(
      bbox=image_shape_bbox,
      image_height=output_size[0],
      image_width=output_size[1],
      dtype=tf.bool)

  return predictions, image_shape_masks