common_flags.py 4.93 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Define flags are common for both train.py and eval.py scripts."""
17
import logging
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import sys

from tensorflow.python.platform import flags

import datasets
import model

FLAGS = flags.FLAGS

logging.basicConfig(
    level=logging.DEBUG,
    stream=sys.stderr,
    format='%(levelname)s '
    '%(asctime)s.%(msecs)06d: '
    '%(filename)s: '
    '%(lineno)d '
    '%(message)s',
    datefmt='%Y-%m-%d %H:%M:%S')


38
39
_common_flags_defined = False

40
41
42
def define():
  """Define common flags."""
  # yapf: disable
43
44
45
46
47
48
  # common_flags.define() may be called multiple times in unit tests.
  global _common_flags_defined
  if _common_flags_defined:
    return
  _common_flags_defined = True

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
  flags.DEFINE_integer('batch_size', 32,
                       'Batch size.')

  flags.DEFINE_integer('crop_width', None,
                       'Width of the central crop for images.')

  flags.DEFINE_integer('crop_height', None,
                       'Height of the central crop for images.')

  flags.DEFINE_string('train_log_dir', '/tmp/attention_ocr/train',
                      'Directory where to write event logs.')

  flags.DEFINE_string('dataset_name', 'fsns',
                      'Name of the dataset. Supported: fsns')

  flags.DEFINE_string('split_name', 'train',
                      'Dataset split name to run evaluation for: test,train.')

  flags.DEFINE_string('dataset_dir', None,
                      'Dataset root folder.')

  flags.DEFINE_string('checkpoint', '',
                      'Path for checkpoint to restore weights from.')

  flags.DEFINE_string('master',
                      '',
                      'BNS name of the TensorFlow master to use.')

  # Model hyper parameters
  flags.DEFINE_float('learning_rate', 0.004,
                     'learning rate')

  flags.DEFINE_string('optimizer', 'momentum',
                      'the optimizer to use')

84
  flags.DEFINE_float('momentum', 0.9,
85
                     'momentum value for the momentum optimizer if used')
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157

  flags.DEFINE_bool('use_augment_input', True,
                    'If True will use image augmentation')

  # Method hyper parameters
  # conv_tower_fn
  flags.DEFINE_string('final_endpoint', 'Mixed_5d',
                      'Endpoint to cut inception tower')

  # sequence_logit_fn
  flags.DEFINE_bool('use_attention', True,
                    'If True will use the attention mechanism')

  flags.DEFINE_bool('use_autoregression', True,
                    'If True will use autoregression (a feedback link)')

  flags.DEFINE_integer('num_lstm_units', 256,
                       'number of LSTM units for sequence LSTM')

  flags.DEFINE_float('weight_decay', 0.00004,
                     'weight decay for char prediction FC layers')

  flags.DEFINE_float('lstm_state_clip_value', 10.0,
                     'cell state is clipped by this value prior to the cell'
                     ' output activation')

  # 'sequence_loss_fn'
  flags.DEFINE_float('label_smoothing', 0.1,
                     'weight for label smoothing')

  flags.DEFINE_bool('ignore_nulls', True,
                    'ignore null characters for computing the loss')

  flags.DEFINE_bool('average_across_timesteps', False,
                    'divide the returned cost by the total label weight')
  # yapf: enable


def get_crop_size():
  if FLAGS.crop_width and FLAGS.crop_height:
    return (FLAGS.crop_width, FLAGS.crop_height)
  else:
    return None


def create_dataset(split_name):
  ds_module = getattr(datasets, FLAGS.dataset_name)
  return ds_module.get_split(split_name, dataset_dir=FLAGS.dataset_dir)


def create_mparams():
  return {
      'conv_tower_fn':
      model.ConvTowerParams(final_endpoint=FLAGS.final_endpoint),
      'sequence_logit_fn':
      model.SequenceLogitsParams(
          use_attention=FLAGS.use_attention,
          use_autoregression=FLAGS.use_autoregression,
          num_lstm_units=FLAGS.num_lstm_units,
          weight_decay=FLAGS.weight_decay,
          lstm_state_clip_value=FLAGS.lstm_state_clip_value),
      'sequence_loss_fn':
      model.SequenceLossParams(
          label_smoothing=FLAGS.label_smoothing,
          ignore_nulls=FLAGS.ignore_nulls,
          average_across_timesteps=FLAGS.average_across_timesteps)
  }


def create_model(*args, **kwargs):
  ocr_model = model.Model(mparams=create_mparams(), *args, **kwargs)
  return ocr_model