vggish_postprocess.py 3.78 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Post-process embeddings from VGGish."""

18
from . import vggish_params
19

20
import numpy as np
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91


class Postprocessor(object):
  """Post-processes VGGish embeddings.

  The initial release of AudioSet included 128-D VGGish embeddings for each
  segment of AudioSet. These released embeddings were produced by applying
  a PCA transformation (technically, a whitening transform is included as well)
  and 8-bit quantization to the raw embedding output from VGGish, in order to
  stay compatible with the YouTube-8M project which provides visual embeddings
  in the same format for a large set of YouTube videos. This class implements
  the same PCA (with whitening) and quantization transformations.
  """

  def __init__(self, pca_params_npz_path):
    """Constructs a postprocessor.

    Args:
      pca_params_npz_path: Path to a NumPy-format .npz file that
        contains the PCA parameters used in postprocessing.
    """
    params = np.load(pca_params_npz_path)
    self._pca_matrix = params[vggish_params.PCA_EIGEN_VECTORS_NAME]
    # Load means into a column vector for easier broadcasting later.
    self._pca_means = params[vggish_params.PCA_MEANS_NAME].reshape(-1, 1)
    assert self._pca_matrix.shape == (
        vggish_params.EMBEDDING_SIZE, vggish_params.EMBEDDING_SIZE), (
            'Bad PCA matrix shape: %r' % (self._pca_matrix.shape,))
    assert self._pca_means.shape == (vggish_params.EMBEDDING_SIZE, 1), (
        'Bad PCA means shape: %r' % (self._pca_means.shape,))

  def postprocess(self, embeddings_batch):
    """Applies postprocessing to a batch of embeddings.

    Args:
      embeddings_batch: An nparray of shape [batch_size, embedding_size]
        containing output from the embedding layer of VGGish.

    Returns:
      An nparray of the same shape as the input but of type uint8,
      containing the PCA-transformed and quantized version of the input.
    """
    assert len(embeddings_batch.shape) == 2, (
        'Expected 2-d batch, got %r' % (embeddings_batch.shape,))
    assert embeddings_batch.shape[1] == vggish_params.EMBEDDING_SIZE, (
        'Bad batch shape: %r' % (embeddings_batch.shape,))

    # Apply PCA.
    # - Embeddings come in as [batch_size, embedding_size].
    # - Transpose to [embedding_size, batch_size].
    # - Subtract pca_means column vector from each column.
    # - Premultiply by PCA matrix of shape [output_dims, input_dims]
    #   where both are are equal to embedding_size in our case.
    # - Transpose result back to [batch_size, embedding_size].
    pca_applied = np.dot(self._pca_matrix,
                         (embeddings_batch.T - self._pca_means)).T

    # Quantize by:
    # - clipping to [min, max] range
    clipped_embeddings = np.clip(
        pca_applied, vggish_params.QUANTIZE_MIN_VAL,
        vggish_params.QUANTIZE_MAX_VAL)
    # - convert to 8-bit in range [0.0, 255.0]
    quantized_embeddings = (
        (clipped_embeddings - vggish_params.QUANTIZE_MIN_VAL) *
        (255.0 /
         (vggish_params.QUANTIZE_MAX_VAL - vggish_params.QUANTIZE_MIN_VAL)))
    # - cast 8-bit float to uint8
    quantized_embeddings = quantized_embeddings.astype(np.uint8)

    return quantized_embeddings