README.md 1.51 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
# Domain Seperation Networks

## Introduction
This code is the code used for the "Domain Separation Networks" paper
by Bousmalis K., Trigeorgis G., et al. which was presented at NIPS 2016. The
paper can be found here: https://arxiv.org/abs/1608.06019

## Contact
This code was open-sourced by Konstantinos Bousmalis (konstantinos@google.com, github:bousmalis)

## Installation
You will need to have the following installed on your machine before trying out the DSN code.

*  Tensorflow: https://www.tensorflow.org/install/
*  Bazel: https://bazel.build/

## Running the code for adapting MNIST to MNIST-M
In order to run the MNIST to MNIST-M experiments with DANNs and/or DANNs with
domain separation (DSNs) you will need to set the directory you used to download
MNIST and MNIST-M:
$ export DSN_DATA_DIR=/your/dir

Then you need to build the binaries with Bazel:

$ bazel build -c opt domain_adaptation/domain_separation/...

27
28
29
30
31
Add models and models/slim to your $PYTHONPATH:

$ export PYTHONPATH=$PYTHONPATH:$PWD/slim
$ export PYTHONPATH=$PYTHONPATH:$PWD

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
You can then train with the following command:

$ ./bazel-bin/domain_adaptation/domain_separation/dsn_train \
      --similarity_loss=dann_loss  \
      --basic_tower=dann_mnist  \
      --source_dataset=mnist  \
      --target_dataset=mnist_m  \
      --learning_rate=0.0117249  \
      --gamma_weight=0.251175  \
      --weight_decay=1e-6  \
      --layers_to_regularize=fc3  \
      --nouse_separation  \
      --master=""  \
      --dataset_dir=${DSN_DATA_DIR}  \
      -v --use_logging