callbacks.py 9 KB
Newer Older
Allen Wang's avatar
Allen Wang committed
1
# Lint as: python3
Allen Wang's avatar
Allen Wang committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Common modules for callbacks."""
from __future__ import absolute_import
from __future__ import division
# from __future__ import google_type_annotations
from __future__ import print_function

import os
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
23
from typing import Any, List, MutableMapping, Text
Hongkun Yu's avatar
Hongkun Yu committed
24

Allen Wang's avatar
Allen Wang committed
25
26
from absl import logging
import tensorflow as tf
Allen Wang's avatar
Allen Wang committed
27

Abdullah Rashwan's avatar
Abdullah Rashwan committed
28
from official.modeling import optimization
Allen Wang's avatar
Allen Wang committed
29
from official.utils.misc import keras_utils
Allen Wang's avatar
Allen Wang committed
30
31
32
33


def get_callbacks(model_checkpoint: bool = True,
                  include_tensorboard: bool = True,
Allen Wang's avatar
Allen Wang committed
34
                  time_history: bool = True,
Allen Wang's avatar
Allen Wang committed
35
36
                  track_lr: bool = True,
                  write_model_weights: bool = True,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
37
                  apply_moving_average: bool = False,
Allen Wang's avatar
Allen Wang committed
38
                  initial_step: int = 0,
Allen Wang's avatar
Allen Wang committed
39
40
41
                  batch_size: int = 0,
                  log_steps: int = 0,
                  model_dir: str = None) -> List[tf.keras.callbacks.Callback]:
Allen Wang's avatar
Allen Wang committed
42
43
44
45
46
  """Get all callbacks."""
  model_dir = model_dir or ''
  callbacks = []
  if model_checkpoint:
    ckpt_full_path = os.path.join(model_dir, 'model.ckpt-{epoch:04d}')
Hongkun Yu's avatar
Hongkun Yu committed
47
48
49
    callbacks.append(
        tf.keras.callbacks.ModelCheckpoint(
            ckpt_full_path, save_weights_only=True, verbose=1))
Allen Wang's avatar
Allen Wang committed
50
  if include_tensorboard:
Hongkun Yu's avatar
Hongkun Yu committed
51
52
53
54
55
56
    callbacks.append(
        CustomTensorBoard(
            log_dir=model_dir,
            track_lr=track_lr,
            initial_step=initial_step,
            write_images=write_model_weights))
Allen Wang's avatar
Allen Wang committed
57
  if time_history:
Hongkun Yu's avatar
Hongkun Yu committed
58
59
60
61
62
    callbacks.append(
        keras_utils.TimeHistory(
            batch_size,
            log_steps,
            logdir=model_dir if include_tensorboard else None))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
63
64
65
  if apply_moving_average:
    # Save moving average model to a different file so that
    # we can resume training from a checkpoint
Hongkun Yu's avatar
Hongkun Yu committed
66
67
68
69
70
71
72
73
    ckpt_full_path = os.path.join(model_dir, 'average',
                                  'model.ckpt-{epoch:04d}')
    callbacks.append(
        AverageModelCheckpoint(
            update_weights=False,
            filepath=ckpt_full_path,
            save_weights_only=True,
            verbose=1))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
74
    callbacks.append(MovingAverageCallback())
Allen Wang's avatar
Allen Wang committed
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
  return callbacks


def get_scalar_from_tensor(t: tf.Tensor) -> int:
  """Utility function to convert a Tensor to a scalar."""
  t = tf.keras.backend.get_value(t)
  if callable(t):
    return t()
  else:
    return t


class CustomTensorBoard(tf.keras.callbacks.TensorBoard):
  """A customized TensorBoard callback that tracks additional datapoints.

  Metrics tracked:
  - Global learning rate

  Attributes:
Hongkun Yu's avatar
Hongkun Yu committed
94
95
    log_dir: the path of the directory where to save the log files to be parsed
      by TensorBoard.
Allen Wang's avatar
Allen Wang committed
96
97
    track_lr: `bool`, whether or not to track the global learning rate.
    initial_step: the initial step, used for preemption recovery.
Hongkun Yu's avatar
Hongkun Yu committed
98
99
    **kwargs: Additional arguments for backwards compatibility. Possible key is
      `period`.
Allen Wang's avatar
Allen Wang committed
100
  """
Hongkun Yu's avatar
Hongkun Yu committed
101

Allen Wang's avatar
Allen Wang committed
102
103
104
105
  # TODO(b/146499062): track params, flops, log lr, l2 loss,
  # classification loss

  def __init__(self,
Allen Wang's avatar
Allen Wang committed
106
               log_dir: str,
Allen Wang's avatar
Allen Wang committed
107
108
109
110
111
112
113
114
115
               track_lr: bool = False,
               initial_step: int = 0,
               **kwargs):
    super(CustomTensorBoard, self).__init__(log_dir=log_dir, **kwargs)
    self.step = initial_step
    self._track_lr = track_lr

  def on_batch_begin(self,
                     epoch: int,
Allen Wang's avatar
Allen Wang committed
116
                     logs: MutableMapping[str, Any] = None) -> None:
Allen Wang's avatar
Allen Wang committed
117
118
119
120
121
122
123
124
    self.step += 1
    if logs is None:
      logs = {}
    logs.update(self._calculate_metrics())
    super(CustomTensorBoard, self).on_batch_begin(epoch, logs)

  def on_epoch_begin(self,
                     epoch: int,
Allen Wang's avatar
Allen Wang committed
125
                     logs: MutableMapping[str, Any] = None) -> None:
Allen Wang's avatar
Allen Wang committed
126
127
128
129
130
131
132
133
134
135
    if logs is None:
      logs = {}
    metrics = self._calculate_metrics()
    logs.update(metrics)
    for k, v in metrics.items():
      logging.info('Current %s: %f', k, v)
    super(CustomTensorBoard, self).on_epoch_begin(epoch, logs)

  def on_epoch_end(self,
                   epoch: int,
Allen Wang's avatar
Allen Wang committed
136
                   logs: MutableMapping[str, Any] = None) -> None:
Allen Wang's avatar
Allen Wang committed
137
138
139
140
141
142
    if logs is None:
      logs = {}
    metrics = self._calculate_metrics()
    logs.update(metrics)
    super(CustomTensorBoard, self).on_epoch_end(epoch, logs)

Allen Wang's avatar
Allen Wang committed
143
  def _calculate_metrics(self) -> MutableMapping[str, Any]:
Allen Wang's avatar
Allen Wang committed
144
    logs = {}
145
146
147
    # TODO(b/149030439): disable LR reporting.
    # if self._track_lr:
    #   logs['learning_rate'] = self._calculate_lr()
Allen Wang's avatar
Allen Wang committed
148
149
150
151
    return logs

  def _calculate_lr(self) -> int:
    """Calculates the learning rate given the current step."""
Hongkun Yu's avatar
Hongkun Yu committed
152
    return get_scalar_from_tensor(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
153
        self._get_base_optimizer()._decayed_lr(var_dtype=tf.float32))  # pylint:disable=protected-access
Allen Wang's avatar
Allen Wang committed
154
155
156
157
158
159
160
161
162
163
164

  def _get_base_optimizer(self) -> tf.keras.optimizers.Optimizer:
    """Get the base optimizer used by the current model."""

    optimizer = self.model.optimizer

    # The optimizer might be wrapped by another class, so unwrap it
    while hasattr(optimizer, '_optimizer'):
      optimizer = optimizer._optimizer  # pylint:disable=protected-access

    return optimizer
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
165
166
167


class MovingAverageCallback(tf.keras.callbacks.Callback):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
168
  """A Callback to be used with a `ExponentialMovingAverage` optimizer.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
169
170
171
172
173
174
175
176
177
178
179
180

  Applies moving average weights to the model during validation time to test
  and predict on the averaged weights rather than the current model weights.
  Once training is complete, the model weights will be overwritten with the
  averaged weights (by default).

  Attributes:
    overwrite_weights_on_train_end: Whether to overwrite the current model
      weights with the averaged weights from the moving average optimizer.
    **kwargs: Any additional callback arguments.
  """

Hongkun Yu's avatar
Hongkun Yu committed
181
  def __init__(self, overwrite_weights_on_train_end: bool = False, **kwargs):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
182
183
184
185
186
    super(MovingAverageCallback, self).__init__(**kwargs)
    self.overwrite_weights_on_train_end = overwrite_weights_on_train_end

  def set_model(self, model: tf.keras.Model):
    super(MovingAverageCallback, self).set_model(model)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
187
188
    assert isinstance(self.model.optimizer,
                      optimization.ExponentialMovingAverage)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
    self.model.optimizer.shadow_copy(self.model)

  def on_test_begin(self, logs: MutableMapping[Text, Any] = None):
    self.model.optimizer.swap_weights()

  def on_test_end(self, logs: MutableMapping[Text, Any] = None):
    self.model.optimizer.swap_weights()

  def on_train_end(self, logs: MutableMapping[Text, Any] = None):
    if self.overwrite_weights_on_train_end:
      self.model.optimizer.assign_average_vars(self.model.variables)


class AverageModelCheckpoint(tf.keras.callbacks.ModelCheckpoint):
  """Saves and, optionally, assigns the averaged weights.

  Taken from tfa.callbacks.AverageModelCheckpoint.

  Attributes:
Hongkun Yu's avatar
Hongkun Yu committed
208
209
210
211
    update_weights: If True, assign the moving average weights to the model, and
      save them. If False, keep the old non-averaged weights, but the saved
      model uses the average weights. See `tf.keras.callbacks.ModelCheckpoint`
      for the other args.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
212
213
  """

Hongkun Yu's avatar
Hongkun Yu committed
214
215
216
217
218
219
220
221
222
223
  def __init__(self,
               update_weights: bool,
               filepath: str,
               monitor: str = 'val_loss',
               verbose: int = 0,
               save_best_only: bool = False,
               save_weights_only: bool = False,
               mode: str = 'auto',
               save_freq: str = 'epoch',
               **kwargs):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
224
    self.update_weights = update_weights
Hongkun Yu's avatar
Hongkun Yu committed
225
226
    super().__init__(filepath, monitor, verbose, save_best_only,
                     save_weights_only, mode, save_freq, **kwargs)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
227
228

  def set_model(self, model):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
229
    if not isinstance(model.optimizer, optimization.ExponentialMovingAverage):
Hongkun Yu's avatar
Hongkun Yu committed
230
231
      raise TypeError('AverageModelCheckpoint is only used when training'
                      'with MovingAverage')
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
232
233
234
    return super().set_model(model)

  def _save_model(self, epoch, logs):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
235
236
    assert isinstance(self.model.optimizer,
                      optimization.ExponentialMovingAverage)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
237
238
239
240
241
242
243
244
245
246
247
248
249
250

    if self.update_weights:
      self.model.optimizer.assign_average_vars(self.model.variables)
      return super()._save_model(epoch, logs)
    else:
      # Note: `model.get_weights()` gives us the weights (non-ref)
      # whereas `model.variables` returns references to the variables.
      non_avg_weights = self.model.get_weights()
      self.model.optimizer.assign_average_vars(self.model.variables)
      # result is currently None, since `super._save_model` doesn't
      # return anything, but this may change in the future.
      result = super()._save_model(epoch, logs)
      self.model.set_weights(non_avg_weights)
      return result