dual_encoder_test.py 4.45 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Tests for official.nlp.tasks.sentence_prediction."""
import functools
import os

from absl.testing import parameterized
import tensorflow as tf

Le Hou's avatar
Le Hou committed
22
from official.legacy.bert import configs
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
from official.nlp.configs import bert
from official.nlp.configs import encoders
from official.nlp.data import dual_encoder_dataloader
from official.nlp.tasks import dual_encoder
from official.nlp.tasks import masked_lm
from official.nlp.tools import export_tfhub_lib


class DualEncoderTaskTest(tf.test.TestCase, parameterized.TestCase):

  def setUp(self):
    super(DualEncoderTaskTest, self).setUp()
    self._train_data_config = (
        dual_encoder_dataloader.DualEncoderDataConfig(
            input_path="dummy", seq_length=32))

  def get_model_config(self):
    return dual_encoder.ModelConfig(
        max_sequence_length=32,
        encoder=encoders.EncoderConfig(
            bert=encoders.BertEncoderConfig(vocab_size=30522, num_layers=1)))

  def _run_task(self, config):
    task = dual_encoder.DualEncoderTask(config)
    model = task.build_model()
    metrics = task.build_metrics()

    strategy = tf.distribute.get_strategy()
    dataset = strategy.distribute_datasets_from_function(
        functools.partial(task.build_inputs, config.train_data))

    dataset.batch(10)
    iterator = iter(dataset)
    optimizer = tf.keras.optimizers.SGD(lr=0.1)
    task.train_step(next(iterator), model, optimizer, metrics=metrics)
    task.validation_step(next(iterator), model, metrics=metrics)
    model.save(os.path.join(self.get_temp_dir(), "saved_model"))

  def test_task(self):
    config = dual_encoder.DualEncoderConfig(
        init_checkpoint=self.get_temp_dir(),
        model=self.get_model_config(),
        train_data=self._train_data_config)
    task = dual_encoder.DualEncoderTask(config)
    model = task.build_model()
    metrics = task.build_metrics()
    dataset = task.build_inputs(config.train_data)

    iterator = iter(dataset)
    optimizer = tf.keras.optimizers.SGD(lr=0.1)
    task.train_step(next(iterator), model, optimizer, metrics=metrics)
    task.validation_step(next(iterator), model, metrics=metrics)

    # Saves a checkpoint.
    pretrain_cfg = bert.PretrainerConfig(
        encoder=encoders.EncoderConfig(
            bert=encoders.BertEncoderConfig(vocab_size=30522, num_layers=1)))
    pretrain_model = masked_lm.MaskedLMTask(None).build_model(pretrain_cfg)
    ckpt = tf.train.Checkpoint(
        model=pretrain_model, **pretrain_model.checkpoint_items)
    ckpt.save(config.init_checkpoint)
    task.initialize(model)

  def _export_bert_tfhub(self):
    bert_config = configs.BertConfig(
        vocab_size=30522,
        hidden_size=16,
        intermediate_size=32,
        max_position_embeddings=128,
        num_attention_heads=2,
        num_hidden_layers=4)
    encoder = export_tfhub_lib.get_bert_encoder(bert_config)
    model_checkpoint_dir = os.path.join(self.get_temp_dir(), "checkpoint")

    checkpoint = tf.train.Checkpoint(encoder=encoder)
    checkpoint.save(os.path.join(model_checkpoint_dir, "test"))
    model_checkpoint_path = tf.train.latest_checkpoint(model_checkpoint_dir)

    vocab_file = os.path.join(self.get_temp_dir(), "uncased_vocab.txt")
    with tf.io.gfile.GFile(vocab_file, "w") as f:
      f.write("dummy content")

    export_path = os.path.join(self.get_temp_dir(), "hub")
    export_tfhub_lib.export_model(
        export_path,
        bert_config=bert_config,
        encoder_config=None,
        model_checkpoint_path=model_checkpoint_path,
        vocab_file=vocab_file,
        do_lower_case=True,
        with_mlm=False)
    return export_path

  def test_task_with_hub(self):
    hub_module_url = self._export_bert_tfhub()
    config = dual_encoder.DualEncoderConfig(
        hub_module_url=hub_module_url,
        model=self.get_model_config(),
        train_data=self._train_data_config)
    self._run_task(config)


if __name__ == "__main__":
  tf.test.main()