neumf_model.py 6.46 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Defines NeuMF model for NCF framework.

Some abbreviations used in the code base:
NeuMF: Neural Matrix Factorization
NCF: Neural Collaborative Filtering
GMF: Generalized Matrix Factorization
MLP: Multi-Layer Perceptron

GMF applies a linear kernel to model the latent feature interactions, and MLP
uses a nonlinear kernel to learn the interaction function from data. NeuMF model
is a fused model of GMF and MLP to better model the complex user-item
interactions, and unifies the strengths of linearity of MF and non-linearity of
MLP for modeling the user-item latent structures.

In NeuMF model, it allows GMF and MLP to learn separate embeddings, and combine
the two models by concatenating their last hidden layer.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

36
37
38
import sys
import typing

39
40
41
from six.moves import xrange  # pylint: disable=redefined-builtin
import tensorflow as tf

42
from official.datasets import movielens  # pylint: disable=g-bad-import-order
43
from official.recommendation import stat_utils
44
45
46
47


def neumf_model_fn(features, labels, mode, params):
  """Model Function for NeuMF estimator."""
48
49
50
  if params.get("use_seed"):
    tf.set_random_seed(stat_utils.random_int32())

51
52
53
54
55
56
57
  users = features[movielens.USER_COLUMN]
  items = tf.cast(features[movielens.ITEM_COLUMN], tf.int32)

  logits = construct_model(users=users, items=items, params=params)

  if mode == tf.estimator.ModeKeys.PREDICT:
    predictions = {
58
        movielens.ITEM_COLUMN: items,
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
        movielens.RATING_COLUMN: logits,
    }

    if params["use_tpu"]:
      return tf.contrib.tpu.TPUEstimatorSpec(mode=mode, predictions=predictions)
    return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)

  elif mode == tf.estimator.ModeKeys.TRAIN:
    labels = tf.cast(labels, tf.int32)
    optimizer = tf.train.AdamOptimizer(learning_rate=params["learning_rate"])
    if params["use_tpu"]:
      optimizer = tf.contrib.tpu.CrossShardOptimizer(optimizer)

    # Softmax with the first column of ones is equivalent to sigmoid.
    logits = tf.concat([tf.ones(logits.shape, dtype=logits.dtype), logits]
                       , axis=1)

    loss = tf.losses.sparse_softmax_cross_entropy(
        labels=labels,
        logits=logits
    )

    global_step = tf.train.get_global_step()
    tvars = tf.trainable_variables()
    gradients = optimizer.compute_gradients(
        loss, tvars, colocate_gradients_with_ops=True)
    minimize_op = optimizer.apply_gradients(
        gradients, global_step=global_step, name="train")
    update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
    train_op = tf.group(minimize_op, update_ops)

    if params["use_tpu"]:
      return tf.contrib.tpu.TPUEstimatorSpec(
          mode=mode, loss=loss, train_op=train_op)
    return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_op)

  else:
    raise NotImplementedError


def construct_model(users, items, params):
  # type: (tf.Tensor, tf.Tensor, dict) -> tf.Tensor
  """Initialize NeuMF model.

  Args:
    users: Tensor of user ids.
    items: Tensor of item ids.
    params: Dict of hyperparameters.

  Raises:
    ValueError: if the first model layer is not even.
  """

  num_users = params["num_users"]
  num_items = params["num_items"]

  model_layers = params["model_layers"]

  mf_regularization = params["mf_regularization"]
  mlp_reg_layers = params["mlp_reg_layers"]

  mf_dim = params["mf_dim"]

  if model_layers[0] % 2 != 0:
    raise ValueError("The first layer size should be multiple of 2!")

  # Input variables
  user_input = tf.keras.layers.Input(tensor=users)
  item_input = tf.keras.layers.Input(tensor=items)

  # Initializer for embedding layers
  embedding_initializer = "glorot_uniform"

  # Embedding layers of GMF and MLP
  mf_embedding_user = tf.keras.layers.Embedding(
      num_users,
      mf_dim,
      embeddings_initializer=embedding_initializer,
      embeddings_regularizer=tf.keras.regularizers.l2(mf_regularization),
      input_length=1)
  mf_embedding_item = tf.keras.layers.Embedding(
      num_items,
      mf_dim,
      embeddings_initializer=embedding_initializer,
      embeddings_regularizer=tf.keras.regularizers.l2(mf_regularization),
      input_length=1)

  mlp_embedding_user = tf.keras.layers.Embedding(
      num_users,
      model_layers[0]//2,
      embeddings_initializer=embedding_initializer,
      embeddings_regularizer=tf.keras.regularizers.l2(mlp_reg_layers[0]),
      input_length=1)
  mlp_embedding_item = tf.keras.layers.Embedding(
      num_items,
      model_layers[0]//2,
      embeddings_initializer=embedding_initializer,
      embeddings_regularizer=tf.keras.regularizers.l2(mlp_reg_layers[0]),
      input_length=1)

  # GMF part
160
161
  mf_user_latent = mf_embedding_user(user_input)
  mf_item_latent = mf_embedding_item(item_input)
162
163
164
165
  # Element-wise multiply
  mf_vector = tf.keras.layers.multiply([mf_user_latent, mf_item_latent])

  # MLP part
166
167
  mlp_user_latent = mlp_embedding_user(user_input)
  mlp_item_latent = mlp_embedding_item(item_input)
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
  # Concatenation of two latent features
  mlp_vector = tf.keras.layers.concatenate([mlp_user_latent, mlp_item_latent])

  num_layer = len(model_layers)  # Number of layers in the MLP
  for layer in xrange(1, num_layer):
    model_layer = tf.keras.layers.Dense(
        model_layers[layer],
        kernel_regularizer=tf.keras.regularizers.l2(mlp_reg_layers[layer]),
        activation="relu")
    mlp_vector = model_layer(mlp_vector)

  # Concatenate GMF and MLP parts
  predict_vector = tf.keras.layers.concatenate([mf_vector, mlp_vector])

  # Final prediction layer
  logits = tf.keras.layers.Dense(
      1, activation=None, kernel_initializer="lecun_uniform",
      name=movielens.RATING_COLUMN)(predict_vector)

  # Print model topology.
  tf.keras.models.Model([user_input, item_input], logits).summary()
  sys.stdout.flush()

  return logits