parser_trainer.py 7.53 KB
Newer Older
Ivan Bogatyy's avatar
Ivan Bogatyy committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
# Copyright 2016 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""A program to train a tensorflow neural net parser from a conll file."""




import os
import os.path
import random
import time
import tensorflow as tf

from tensorflow.python.platform import gfile
from tensorflow.python.platform import tf_logging as logging

from google.protobuf import text_format

from syntaxnet.ops import gen_parser_ops
from syntaxnet import task_spec_pb2
from syntaxnet import sentence_pb2

from dragnn.protos import spec_pb2
from dragnn.python import evaluation
from dragnn.python import graph_builder
from dragnn.python import lexicon
from dragnn.python import sentence_io
from dragnn.python import spec_builder
from dragnn.python import trainer_lib

import dragnn.python.load_dragnn_cc_impl
import syntaxnet.load_parser_ops

flags = tf.app.flags
FLAGS = flags.FLAGS

flags.DEFINE_string('tf_master', '',
                    'TensorFlow execution engine to connect to.')
flags.DEFINE_string('resource_path', '', 'Path to constructed resources.')
flags.DEFINE_string('tensorboard_dir', '',
                    'Directory for TensorBoard logs output.')
flags.DEFINE_string('checkpoint_filename', '',
                    'Filename to save the best checkpoint to.')

flags.DEFINE_string('training_corpus_path', '', 'Path to training data.')
flags.DEFINE_string('dev_corpus_path', '', 'Path to development set data.')

flags.DEFINE_bool('compute_lexicon', False, '')
flags.DEFINE_bool('projectivize_training_set', True, '')

flags.DEFINE_integer('batch_size', 4, 'Batch size.')
flags.DEFINE_integer('report_every', 200,
                     'Report cost and training accuracy every this many steps.')


def main(unused_argv):
  logging.set_verbosity(logging.INFO)

  if not gfile.IsDirectory(FLAGS.resource_path):
    gfile.MakeDirs(FLAGS.resource_path)

  # Constructs lexical resources for SyntaxNet in the given resource path, from
  # the training data.
  if FLAGS.compute_lexicon:
    logging.info('Computing lexicon...')
    lexicon.build_lexicon(FLAGS.resource_path, FLAGS.training_corpus_path)

  # Construct the "lookahead" ComponentSpec. This is a simple right-to-left RNN
  # sequence model, which encodes the context to the right of each token. It has
  # no loss except for the downstream components.

  char2word = spec_builder.ComponentSpecBuilder('char_lstm')
  char2word.set_network_unit(
      name='wrapped_units.LayerNormBasicLSTMNetwork',
      hidden_layer_sizes='256')
  char2word.set_transition_system(name='char-shift-only', left_to_right='true')
  char2word.add_fixed_feature(name='chars', fml='char-input.text-char',
                              embedding_dim=16)
  char2word.fill_from_resources(FLAGS.resource_path, FLAGS.tf_master)

  lookahead = spec_builder.ComponentSpecBuilder('lookahead')
  lookahead.set_network_unit(
      name='wrapped_units.LayerNormBasicLSTMNetwork',
      hidden_layer_sizes='256')
  lookahead.set_transition_system(name='shift-only', left_to_right='false')
  lookahead.add_link(source=char2word, fml='input.last-char-focus',
                     embedding_dim=32)
  lookahead.fill_from_resources(FLAGS.resource_path, FLAGS.tf_master)

  # Construct the ComponentSpec for tagging. This is a simple left-to-right RNN
  # sequence tagger.
  tagger = spec_builder.ComponentSpecBuilder('tagger')
  tagger.set_network_unit(
      name='wrapped_units.LayerNormBasicLSTMNetwork',
      hidden_layer_sizes='256')
  tagger.set_transition_system(name='tagger')
  tagger.add_token_link(source=lookahead, fml='input.focus', embedding_dim=32)
  tagger.fill_from_resources(FLAGS.resource_path, FLAGS.tf_master)

  # Construct the ComponentSpec for parsing.
  parser = spec_builder.ComponentSpecBuilder('parser')
  parser.set_network_unit(name='FeedForwardNetwork', hidden_layer_sizes='256',
                          layer_norm_hidden='True')
  parser.set_transition_system(name='arc-standard')
  parser.add_token_link(source=lookahead, fml='input.focus', embedding_dim=32)
  parser.add_token_link(
      source=tagger,
      fml='input.focus stack.focus stack(1).focus',
      embedding_dim=32)

  # Recurrent connection for the arc-standard parser. For both tokens on the
  # stack, we connect to the last time step to either SHIFT or REDUCE that
  # token. This allows the parser to build up compositional representations of
  # phrases.
  parser.add_link(
      source=parser,  # recurrent connection
      name='rnn-stack',  # unique identifier
      fml='stack.focus stack(1).focus',  # look for both stack tokens
      source_translator='shift-reduce-step',  # maps token indices -> step
      embedding_dim=32)  # project down to 32 dims

  parser.fill_from_resources(FLAGS.resource_path, FLAGS.tf_master)

  master_spec = spec_pb2.MasterSpec()
  master_spec.component.extend([char2word.spec, lookahead.spec,
                                tagger.spec, parser.spec])
  logging.info('Constructed master spec: %s', str(master_spec))
  hyperparam_config = spec_pb2.GridPoint()
  hyperparam_config.decay_steps = 128000
  hyperparam_config.learning_rate = 0.001
  hyperparam_config.learning_method = 'adam'
  hyperparam_config.adam_beta1 = 0.9
  hyperparam_config.adam_beta2 = 0.9
  hyperparam_config.adam_eps = 0.0001
  hyperparam_config.gradient_clip_norm = 1
  hyperparam_config.self_norm_alpha = 1.0
  hyperparam_config.use_moving_average = True
  hyperparam_config.dropout_rate = 0.7
  hyperparam_config.seed = 1

  # Build the TensorFlow graph.
  graph = tf.Graph()
  with graph.as_default():
    builder = graph_builder.MasterBuilder(master_spec, hyperparam_config)
    component_targets = spec_builder.default_targets_from_spec(master_spec)
    trainers = [
        builder.add_training_from_config(target) for target in component_targets
    ]
    assert len(trainers) == 2
    annotator = builder.add_annotation()
    builder.add_saver()

  # Read in serialized protos from training data.
  training_set = sentence_io.ConllSentenceReader(
      FLAGS.training_corpus_path,
      projectivize=FLAGS.projectivize_training_set).corpus()
  dev_set = sentence_io.ConllSentenceReader(
      FLAGS.dev_corpus_path, projectivize=False).corpus()

  # Ready to train!
  logging.info('Training on %d sentences.', len(training_set))
  logging.info('Tuning on %d sentences.', len(dev_set))

  pretrain_steps = [100, 0]
  tagger_steps = 1000
  train_steps = [tagger_steps, 8 * tagger_steps]

  tf.logging.info('Creating TensorFlow checkpoint dir...')
  gfile.MakeDirs(os.path.dirname(FLAGS.checkpoint_filename))
  summary_writer = trainer_lib.get_summary_writer(FLAGS.tensorboard_dir)

  with tf.Session(FLAGS.tf_master, graph=graph) as sess:
    # Make sure to re-initialize all underlying state.
    sess.run(tf.global_variables_initializer())
    trainer_lib.run_training(
        sess, trainers, annotator, evaluation.parser_summaries, pretrain_steps,
        train_steps, training_set, dev_set, dev_set, FLAGS.batch_size,
        summary_writer, FLAGS.report_every, builder.saver,
        FLAGS.checkpoint_filename)


if __name__ == '__main__':
  tf.app.run()