biaffine_units.py 10.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2017 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

Ivan Bogatyy's avatar
Ivan Bogatyy committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
"""Network units used in the Dozat and Manning (2017) biaffine parser."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf

from dragnn.python import digraph_ops
from dragnn.python import network_units
from syntaxnet.util import check


class BiaffineDigraphNetwork(network_units.NetworkUnitInterface):
  """Network unit that computes biaffine digraph scores.

  The D&M parser uses two MLPs to create two activation vectors for each token,
  which represent the token when it it used as the source or target of an arc.
  Arcs are scored using a "biaffine" function that includes a bilinear and
  linear term:

    sources[s] * arc_weights * targets[t] + sources[s] * source_weights

  The digraph is "unlabeled" in that there is at most one arc between any pair
  of tokens.  If labels are required, the BiaffineLabelNetwork can be used to
  label a set of selected arcs.

  Note that in the typical use case where the source and target activations are
  the same dimension and are produced by single-layer MLPs, it is arithmetically
  equivalent to produce the source and target activations using a single MLP of
  twice the size, and then split those activations in half.  The |SplitNetwork|
  can be used for this purpose.

  Parameters:
    None.

  Features:
    sources: [B * N, S] matrix of batched activations for source tokens.
    targets: [B * N, T] matrix of batched activations for target tokens.

  Layers:
    adjacency: [B * N, N] matrix where entry b*N+s,t is the score of the arc
               from s to t in batch b, if s != t, or the score for selecting t
               as a root, if s == t.
  """

  def __init__(self, component):
    """Initializes weights and layers.

    Args:
      component: Parent ComponentBuilderBase object.
    """
    super(BiaffineDigraphNetwork, self).__init__(component)

    check.Eq(len(self._fixed_feature_dims.items()), 0,
             'Expected no fixed features')
    check.Eq(len(self._linked_feature_dims.items()), 2,
             'Expected two linked features')

    check.In('sources', self._linked_feature_dims,
             'Missing required linked feature')
    check.In('targets', self._linked_feature_dims,
             'Missing required linked feature')
    self._source_dim = self._linked_feature_dims['sources']
    self._target_dim = self._linked_feature_dims['targets']

    # TODO(googleuser): Make parameter initialization configurable.
    self._weights = []
    self._weights.append(tf.get_variable(
        'weights_arc', [self._source_dim, self._target_dim], tf.float32,
86
        tf.random_normal_initializer(stddev=1e-4)))
Ivan Bogatyy's avatar
Ivan Bogatyy committed
87
88
    self._weights.append(tf.get_variable(
        'weights_source', [self._source_dim], tf.float32,
89
        tf.random_normal_initializer(stddev=1e-4)))
Ivan Bogatyy's avatar
Ivan Bogatyy committed
90
91
    self._weights.append(tf.get_variable(
        'root', [self._source_dim], tf.float32,
92
        tf.random_normal_initializer(stddev=1e-4)))
Ivan Bogatyy's avatar
Ivan Bogatyy committed
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195

    self._params.extend(self._weights)
    self._regularized_weights.extend(self._weights)

    # Negative Layer.dim indicates that the dimension is dynamic.
    self._layers.append(network_units.Layer(self, 'adjacency', -1))

  def create(self,
             fixed_embeddings,
             linked_embeddings,
             context_tensor_arrays,
             attention_tensor,
             during_training,
             stride=None):
    """Requires |stride|; otherwise see base class."""
    check.NotNone(stride,
                  'BiaffineDigraphNetwork requires "stride" and must be called '
                  'in the bulk feature extractor component.')

    # TODO(googleuser): Add dropout during training.
    del during_training

    # Retrieve (possibly averaged) weights.
    weights_arc = self._component.get_variable('weights_arc')
    weights_source = self._component.get_variable('weights_source')
    root = self._component.get_variable('root')

    # Extract the source and target token activations.  Use |stride| to collapse
    # batch and beam into a single dimension.
    sources = network_units.lookup_named_tensor('sources', linked_embeddings)
    targets = network_units.lookup_named_tensor('targets', linked_embeddings)
    source_tokens_bxnxs = tf.reshape(sources.tensor,
                                     [stride, -1, self._source_dim])
    target_tokens_bxnxt = tf.reshape(targets.tensor,
                                     [stride, -1, self._target_dim])
    num_tokens = tf.shape(source_tokens_bxnxs)[1]

    # Compute the arc, source, and root potentials.
    arcs_bxnxn = digraph_ops.ArcPotentialsFromTokens(
        source_tokens_bxnxs, target_tokens_bxnxt, weights_arc)
    sources_bxnxn = digraph_ops.ArcSourcePotentialsFromTokens(
        source_tokens_bxnxs, weights_source)
    roots_bxn = digraph_ops.RootPotentialsFromTokens(
        root, target_tokens_bxnxt, weights_arc)

    # Combine them into a single matrix with the roots on the diagonal.
    adjacency_bxnxn = digraph_ops.CombineArcAndRootPotentials(
        arcs_bxnxn + sources_bxnxn, roots_bxn)

    return [tf.reshape(adjacency_bxnxn, [-1, num_tokens])]


class BiaffineLabelNetwork(network_units.NetworkUnitInterface):
  """Network unit that computes biaffine label scores.

  D&M parser uses a slightly modified version of the arc scoring function to
  score labels.  The differences are:

    1. Each label has its own source and target MLPs and biaffine weights.
    2. A linear term for the target token is added.
    3. A bias term is added.

  Parameters:
    num_labels: The number of dependency labels, L.

  Features:
    sources: [B * N, S] matrix of batched activations for source tokens.
    targets: [B * N, T] matrix of batched activations for target tokens.

  Layers:
    labels: [B * N, L] matrix where entry b*N+t,l is the score of the label of
            the inbound arc for token t in batch b.
  """

  def __init__(self, component):
    """Initializes weights and layers.

    Args:
      component: Parent ComponentBuilderBase object.
    """
    super(BiaffineLabelNetwork, self).__init__(component)

    parameters = component.spec.network_unit.parameters
    self._num_labels = int(parameters['num_labels'])

    check.Gt(self._num_labels, 0, 'Expected some labels')
    check.Eq(len(self._fixed_feature_dims.items()), 0,
             'Expected no fixed features')
    check.Eq(len(self._linked_feature_dims.items()), 2,
             'Expected two linked features')

    check.In('sources', self._linked_feature_dims,
             'Missing required linked feature')
    check.In('targets', self._linked_feature_dims,
             'Missing required linked feature')

    self._source_dim = self._linked_feature_dims['sources']
    self._target_dim = self._linked_feature_dims['targets']

    # TODO(googleuser): Make parameter initialization configurable.
    self._weights = []
    self._weights.append(tf.get_variable(
        'weights_pair', [self._num_labels, self._source_dim, self._target_dim],
196
        tf.float32, tf.random_normal_initializer(stddev=1e-4)))
Ivan Bogatyy's avatar
Ivan Bogatyy committed
197
198
    self._weights.append(tf.get_variable(
        'weights_source', [self._num_labels, self._source_dim], tf.float32,
199
        tf.random_normal_initializer(stddev=1e-4)))
Ivan Bogatyy's avatar
Ivan Bogatyy committed
200
201
    self._weights.append(tf.get_variable(
        'weights_target', [self._num_labels, self._target_dim], tf.float32,
202
        tf.random_normal_initializer(stddev=1e-4)))
Ivan Bogatyy's avatar
Ivan Bogatyy committed
203
204
205
206

    self._biases = []
    self._biases.append(tf.get_variable(
        'biases', [self._num_labels], tf.float32,
207
        tf.random_normal_initializer(stddev=1e-4)))
Ivan Bogatyy's avatar
Ivan Bogatyy committed
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

    self._params.extend(self._weights + self._biases)
    self._regularized_weights.extend(self._weights)

    self._layers.append(network_units.Layer(self, 'labels', self._num_labels))

  def create(self,
             fixed_embeddings,
             linked_embeddings,
             context_tensor_arrays,
             attention_tensor,
             during_training,
             stride=None):
    """Requires |stride|; otherwise see base class."""
    check.NotNone(stride,
                  'BiaffineLabelNetwork requires "stride" and must be called '
                  'in the bulk feature extractor component.')

    # TODO(googleuser): Add dropout during training.
    del during_training

    # Retrieve (possibly averaged) weights.
    weights_pair = self._component.get_variable('weights_pair')
    weights_source = self._component.get_variable('weights_source')
    weights_target = self._component.get_variable('weights_target')
    biases = self._component.get_variable('biases')

    # Extract and shape the source and target token activations.  Use |stride|
    # to collapse batch and beam into a single dimension.
    sources = network_units.lookup_named_tensor('sources', linked_embeddings)
    targets = network_units.lookup_named_tensor('targets', linked_embeddings)
    sources_bxnxs = tf.reshape(sources.tensor, [stride, -1, self._source_dim])
    targets_bxnxt = tf.reshape(targets.tensor, [stride, -1, self._target_dim])

    # Compute the pair, source, and target potentials.
    pairs_bxnxl = digraph_ops.LabelPotentialsFromTokenPairs(sources_bxnxs,
                                                            targets_bxnxt,
                                                            weights_pair)
    sources_bxnxl = digraph_ops.LabelPotentialsFromTokens(sources_bxnxs,
                                                          weights_source)
    targets_bxnxl = digraph_ops.LabelPotentialsFromTokens(targets_bxnxt,
                                                          weights_target)

    # Combine them with the biases.
    labels_bxnxl = pairs_bxnxl + sources_bxnxl + targets_bxnxl + biases

    # Flatten out the batch dimension.
    return [tf.reshape(labels_bxnxl, [-1, self._num_labels])]