ncf_keras_benchmark.py 11.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Executes Keras benchmarks and accuracy tests."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import time

from absl import flags
from absl.testing import flagsaver
import tensorflow as tf  # pylint: disable=g-bad-import-order

from official.recommendation import ncf_common
from official.recommendation import ncf_keras_main
from official.utils.flags import core

FLAGS = flags.FLAGS
Toby Boyd's avatar
Toby Boyd committed
33
34
NCF_DATA_DIR_NAME = 'movielens_data'

35

36
class NCFKerasBenchmarkBase(tf.test.Benchmark):
37
38
39
40
41
42
43
44
45
46
47
48
49
  """Base class for NCF model benchmark."""
  local_flags = None

  def __init__(self,
               output_dir=None,
               default_flags=None,
               **kwargs):
    self.output_dir = output_dir
    self.default_flags = default_flags or {}

  def _setup(self):
    """Sets up and resets flags before each test."""
    tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.DEBUG)
50
    if NCFKerasBenchmarkBase.local_flags is None:
Toby Boyd's avatar
Toby Boyd committed
51
      ncf_common.define_ncf_flags()
52
53
54
55
      # Loads flags to get defaults to then override. List cannot be empty.
      flags.FLAGS(['foo'])
      core.set_defaults(**self.default_flags)
      saved_flag_values = flagsaver.save_flag_values()
56
      NCFKerasBenchmarkBase.local_flags = saved_flag_values
57
    else:
58
      flagsaver.restore_flag_values(NCFKerasBenchmarkBase.local_flags)
59

Toby Boyd's avatar
Toby Boyd committed
60
  def _run_and_report_benchmark(self, hr_at_10_min=0, hr_at_10_max=0):
61
62
63
64
    start_time_sec = time.time()
    stats = ncf_keras_main.run_ncf(FLAGS)
    wall_time_sec = time.time() - start_time_sec

Toby Boyd's avatar
Toby Boyd committed
65
66
67
    metrics = []
    metrics.append({'name': 'exp_per_second',
                    'value': stats['avg_exp_per_second']})
68

Toby Boyd's avatar
Toby Boyd committed
69
70
71
72
73
74
75
76
77
78
    if hr_at_10_min > 0:
      metrics.append({'name': 'hr_at_10',
                      'value': stats['eval_hit_rate'],
                      'min_value': hr_at_10_min,
                      'max_value': hr_at_10_max})

      metrics.append({'name': 'train_loss',
                      'value': stats['loss']})

    self.report_benchmark(iters=-1, wall_time=wall_time_sec, metrics=metrics)
79
80


81
class NCFKerasAccuracy(NCFKerasBenchmarkBase):
82
83
84
85
  """Benchmark NCF model using real data."""

  def __init__(self,
               output_dir=None,
Toby Boyd's avatar
Toby Boyd committed
86
               root_data_dir=None,
87
88
89
90
91
92
               default_flags=None,
               **kwargs):

    default_flags = {}
    default_flags['dataset'] = 'ml-20m'
    default_flags['num_gpus'] = 1
93
    default_flags['train_epochs'] = 10
94
    default_flags['clean'] = True
95
    default_flags['batch_size'] = 99000
96
97
98
99
100
101
102
    default_flags['learning_rate'] = 0.00382059
    default_flags['beta1'] = 0.783529
    default_flags['beta2'] = 0.909003
    default_flags['epsilon'] = 1.45439e-07
    default_flags['layers'] = [256, 256, 128, 64]
    default_flags['num_factors'] = 64
    default_flags['hr_threshold'] = 0.635
103
    default_flags['ml_perf'] = True
104
    default_flags['use_synthetic_data'] = False
Toby Boyd's avatar
Toby Boyd committed
105
    default_flags['data_dir'] = os.path.join(root_data_dir, NCF_DATA_DIR_NAME)
106

107
    super(NCFKerasAccuracy, self).__init__(
108
109
110
111
        output_dir=output_dir,
        default_flags=default_flags,
        **kwargs)

Toby Boyd's avatar
Toby Boyd committed
112
113
  def _run_and_report_benchmark_mlperf_like(self):
    """Run test and report results.
Toby Boyd's avatar
Toby Boyd committed
114

Toby Boyd's avatar
Toby Boyd committed
115
116
117
    Note: MLPerf like tests are not tuned to hit a specific hr@10 value, but
    we want it recorded.
    """
118
    self._run_and_report_benchmark(hr_at_10_min=0.61, hr_at_10_max=0.65)
Toby Boyd's avatar
Toby Boyd committed
119

Toby Boyd's avatar
Toby Boyd committed
120
121
  def _run_and_report_benchmark(self, hr_at_10_min=0.630, hr_at_10_max=0.640):
    """Run test and report results.
Toby Boyd's avatar
Toby Boyd committed
122

Toby Boyd's avatar
Toby Boyd committed
123
124
125
126
127
128
129
130
    Note: Target is 0.635, but some runs are below that level. Until we have
    multi-run tests, we have to accept a lower target.

    Args:
      hr_at_10_min: Minimum acceptable hr@10 value.
      hr_at_10_max: Maximum acceptable hr@10 value.
    """
    super(NCFKerasAccuracy, self)._run_and_report_benchmark(
131
132
        hr_at_10_min=hr_at_10_min,
        hr_at_10_max=hr_at_10_max)
133

134
  def benchmark_1_gpu_early_stop(self):
135
    self._setup()
136
    FLAGS.early_stopping = True
137
138
    self._run_and_report_benchmark()

139
140
141
142
143
144
  def benchmark_1_gpu_force_v2_early_stop(self):
    self._setup()
    FLAGS.early_stopping = True
    FLAGS.force_v2_in_keras_compile = True
    self._run_and_report_benchmark()

145
146
147
148
149
150
  def benchmark_1_gpu_no_dist_strat_early_stop(self):
    self._setup()
    FLAGS.distribution_strategy = 'off'
    FLAGS.early_stopping = True
    self._run_and_report_benchmark()

151
152
153
154
155
156
157
  def benchmark_1_gpu_no_dist_strat_force_v2_early_stop(self):
    self._setup()
    FLAGS.distribution_strategy = 'off'
    FLAGS.early_stopping = True
    FLAGS.force_v2_in_keras_compile = True
    self._run_and_report_benchmark()

158
159
160
161
162
163
164
165
166
167
168
169
170
  def benchmark_1_gpu_no_dist_strat_run_eagerly_early_stop(self):
    self._setup()
    FLAGS.distribution_strategy = 'off'
    FLAGS.early_stopping = True
    FLAGS.run_eagerly = True
    self._run_and_report_benchmark()

  def benchmark_xla_1_gpu_early_stop(self):
    self._setup()
    FLAGS.early_stopping = True
    FLAGS.enable_xla = True
    self._run_and_report_benchmark()

171
172
173
174
175
176
177
  def benchmark_xla_1_gpu_force_v2_early_stop(self):
    self._setup()
    FLAGS.early_stopping = True
    FLAGS.enable_xla = True
    FLAGS.force_v2_in_keras_compile = True
    self._run_and_report_benchmark()

178
179
180
181
182
183
  def benchmark_1_gpu_ctl_early_stop(self):
    self._setup()
    FLAGS.keras_use_ctl = True
    FLAGS.early_stopping = True
    self._run_and_report_benchmark()

184
185
186
187
188
189
190
  def benchmark_xla_1_gpu_ctl_early_stop(self):
    self._setup()
    FLAGS.keras_use_ctl = True
    FLAGS.early_stopping = True
    FLAGS.enable_xla = True
    self._run_and_report_benchmark()

191
192
193
194
195
196
  def benchmark_2_gpus_early_stop(self):
    self._setup()
    FLAGS.early_stopping = True
    FLAGS.num_gpus = 2
    self._run_and_report_benchmark()

197
  def benchmark_2_gpus_ctl_early_stop(self):
198
    """NCF with custom training loop. Works only in TF 2.0."""
199
200
201
202
203
204
    self._setup()
    FLAGS.keras_use_ctl = True
    FLAGS.early_stopping = True
    FLAGS.num_gpus = 2
    self._run_and_report_benchmark()

205
206
207
208
209
210
211
212
213
#############################################
# Tests below with mlperf in the test name are of two types
#  1) 1 GPU tests are based on MLPerf 0.5 and the TensorFlow pulled submission.
#  2) 8 GPU tests are based on MLPerf 0.5 and use NVIDIA's hyper parameters.
#
# The purpose of both is to get a number to compare to existing results. To do
# this the number of epochs is held constant rather than a race to a given
# accuracy. The accuracy validation is done by the "early_stop" tests.
#############################################
214
215

  def benchmark_1_gpu_mlperf_like(self):
216
    """1 GPU using keras fit/compile."""
217
218
    self._setup()
    FLAGS.train_epochs = 7
Toby Boyd's avatar
Toby Boyd committed
219
    self._run_and_report_benchmark_mlperf_like()
220

221
222
223
224
225
226
227
228
  def benchmark_1_gpu_no_dist_strat_force_v2_mlperf_like(self):
    """1 GPU using compile/fit without dist_strat."""
    self._setup()
    FLAGS.train_epochs = 7
    FLAGS.distribution_strategy = 'off'
    FLAGS.force_v2_in_keras_compile = True
    self._run_and_report_benchmark()

229
  def benchmark_1_gpu_no_dist_strat_mlperf_like(self):
230
    """1 GPU using compile/fit without dist_strat."""
231
232
233
    self._setup()
    FLAGS.train_epochs = 7
    FLAGS.distribution_strategy = 'off'
Toby Boyd's avatar
Toby Boyd committed
234
    self._run_and_report_benchmark_mlperf_like()
235
236
237
238
239
240

  def benchmark_1_gpu_no_dist_strat_run_eagerly_mlperf_like(self):
    self._setup()
    FLAGS.train_epochs = 7
    FLAGS.distribution_strategy = 'off'
    FLAGS.run_eagerly = True
Toby Boyd's avatar
Toby Boyd committed
241
    self._run_and_report_benchmark_mlperf_like()
242
243

  def benchmark_xla_1_gpu_mlperf_like(self):
244
    """1 GPU using compile/fit with XLA."""
245
246
    self._setup()
    FLAGS.train_epochs = 7
247
    FLAGS.enable_xla = True
Toby Boyd's avatar
Toby Boyd committed
248
    self._run_and_report_benchmark_mlperf_like()
249

250
251
252
253
254
  def benchmark_1_gpu_ctl_mlperf_like(self):
    """1 GPU using CTL."""
    self._setup()
    FLAGS.keras_use_ctl = True
    FLAGS.train_epochs = 7
Toby Boyd's avatar
Toby Boyd committed
255
    self._run_and_report_benchmark_mlperf_like()
256

257
258
  def benchmark_xla_1_gpu_ctl_mlperf_like(self):
    """1 GPU using CTL with XLA."""
259
260
    self._setup()
    FLAGS.keras_use_ctl = True
261
262
    FLAGS.enable_xla = True
    FLAGS.train_epochs = 7
Toby Boyd's avatar
Toby Boyd committed
263
    self._run_and_report_benchmark_mlperf_like()
264
265
266
267

  def benchmark_8_gpu_mlperf_like(self):
    """8 GPU using keras fit/compile."""
    self._setup()
268
269
270
271
272
273
274
    FLAGS.num_gpus = 8
    FLAGS.train_epochs = 17
    FLAGS.batch_size = 1048576
    FLAGS.learning_rate = 0.0045
    FLAGS.beta1 = 0.25
    FLAGS.beta2 = 0.5
    FLAGS.epsilon = 1e-8
Toby Boyd's avatar
Toby Boyd committed
275
    self._run_and_report_benchmark_mlperf_like()
276

277
278
  def benchmark_xla_8_gpu_mlperf_like(self):
    """8 GPU using keras fit/compile with XLA."""
nnigania's avatar
nnigania committed
279
280
    self._setup()
    FLAGS.num_gpus = 8
281
    FLAGS.enable_xla = True
nnigania's avatar
nnigania committed
282
283
284
285
286
287
    FLAGS.train_epochs = 17
    FLAGS.batch_size = 1048576
    FLAGS.learning_rate = 0.0045
    FLAGS.beta1 = 0.25
    FLAGS.beta2 = 0.5
    FLAGS.epsilon = 1e-8
Toby Boyd's avatar
Toby Boyd committed
288
    self._run_and_report_benchmark_mlperf_like()
nnigania's avatar
nnigania committed
289

290
291
292
293
294
295
296
297
298
299
300
  def benchmark_8_gpu_ctl_mlperf_like(self):
    """8 GPU using CTL."""
    self._setup()
    FLAGS.keras_use_ctl = True
    FLAGS.num_gpus = 8
    FLAGS.train_epochs = 17
    FLAGS.batch_size = 1048576
    FLAGS.learning_rate = 0.0045
    FLAGS.beta1 = 0.25
    FLAGS.beta2 = 0.5
    FLAGS.epsilon = 1e-8
Toby Boyd's avatar
Toby Boyd committed
301
    self._run_and_report_benchmark_mlperf_like()
302
303
304
305
306
307
308
309
310
311
312
313
314

  def benchmark_xla_8_gpu_ctl_mlperf_like(self):
    """8 GPU using CTL with XLA."""
    self._setup()
    FLAGS.keras_use_ctl = True
    FLAGS.enable_xla = True
    FLAGS.num_gpus = 8
    FLAGS.train_epochs = 17
    FLAGS.batch_size = 1048576
    FLAGS.learning_rate = 0.0045
    FLAGS.beta1 = 0.25
    FLAGS.beta2 = 0.5
    FLAGS.epsilon = 1e-8
Toby Boyd's avatar
Toby Boyd committed
315
    self._run_and_report_benchmark_mlperf_like()
316
317


318
class NCFKerasSynth(NCFKerasBenchmarkBase):
319
320
321
322
323
324
325
326
327
328
  """Benchmark NCF model using synthetic data."""

  def __init__(self,
               output_dir=None,
               default_flags=None,
               **kwargs):

    default_flags = {}
    default_flags['dataset'] = 'ml-20m'
    default_flags['num_gpus'] = 1
329
330
    default_flags['train_epochs'] = 8
    default_flags['batch_size'] = 99000
331
332
333
334
335
336
337
338
339
    default_flags['learning_rate'] = 0.00382059
    default_flags['beta1'] = 0.783529
    default_flags['beta2'] = 0.909003
    default_flags['epsilon'] = 1.45439e-07
    default_flags['layers'] = [256, 256, 128, 64]
    default_flags['num_factors'] = 64
    default_flags['hr_threshold'] = 0.635
    default_flags['use_synthetic_data'] = True

340
    super(NCFKerasSynth, self).__init__(
341
342
343
344
345
346
347
        output_dir=output_dir,
        default_flags=default_flags,
        **kwargs)

  def benchmark_1_gpu(self):
    self._setup()
    self._run_and_report_benchmark()
348
349
350
351
352

  def benchmark_2_gpus(self):
    self._setup()
    FLAGS.num_gpus = 2
    self._run_and_report_benchmark()