inception_v4_test.py 9.71 KB
Newer Older
Alex Kurakin's avatar
Alex Kurakin committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for slim.inception_v4."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf

from nets import inception


class InceptionTest(tf.test.TestCase):

  def testBuildLogits(self):
    batch_size = 5
    height, width = 299, 299
    num_classes = 1000
    inputs = tf.random_uniform((batch_size, height, width, 3))
    logits, end_points = inception.inception_v4(inputs, num_classes)
    auxlogits = end_points['AuxLogits']
    predictions = end_points['Predictions']
    self.assertTrue(auxlogits.op.name.startswith('InceptionV4/AuxLogits'))
    self.assertListEqual(auxlogits.get_shape().as_list(),
                         [batch_size, num_classes])
    self.assertTrue(logits.op.name.startswith('InceptionV4/Logits'))
    self.assertListEqual(logits.get_shape().as_list(),
                         [batch_size, num_classes])
    self.assertTrue(predictions.op.name.startswith(
        'InceptionV4/Logits/Predictions'))
    self.assertListEqual(predictions.get_shape().as_list(),
                         [batch_size, num_classes])

  def testBuildWithoutAuxLogits(self):
    batch_size = 5
    height, width = 299, 299
    num_classes = 1000
    inputs = tf.random_uniform((batch_size, height, width, 3))
    logits, endpoints = inception.inception_v4(inputs, num_classes,
                                               create_aux_logits=False)
    self.assertFalse('AuxLogits' in endpoints)
    self.assertTrue(logits.op.name.startswith('InceptionV4/Logits'))
    self.assertListEqual(logits.get_shape().as_list(),
                         [batch_size, num_classes])

  def testAllEndPointsShapes(self):
    batch_size = 5
    height, width = 299, 299
    num_classes = 1000
    inputs = tf.random_uniform((batch_size, height, width, 3))
    _, end_points = inception.inception_v4(inputs, num_classes)
    endpoints_shapes = {'Conv2d_1a_3x3': [batch_size, 149, 149, 32],
                        'Conv2d_2a_3x3': [batch_size, 147, 147, 32],
                        'Conv2d_2b_3x3': [batch_size, 147, 147, 64],
                        'Mixed_3a': [batch_size, 73, 73, 160],
                        'Mixed_4a': [batch_size, 71, 71, 192],
                        'Mixed_5a': [batch_size, 35, 35, 384],
                        # 4 x Inception-A blocks
                        'Mixed_5b': [batch_size, 35, 35, 384],
                        'Mixed_5c': [batch_size, 35, 35, 384],
                        'Mixed_5d': [batch_size, 35, 35, 384],
                        'Mixed_5e': [batch_size, 35, 35, 384],
                        # Reduction-A block
                        'Mixed_6a': [batch_size, 17, 17, 1024],
                        # 7 x Inception-B blocks
                        'Mixed_6b': [batch_size, 17, 17, 1024],
                        'Mixed_6c': [batch_size, 17, 17, 1024],
                        'Mixed_6d': [batch_size, 17, 17, 1024],
                        'Mixed_6e': [batch_size, 17, 17, 1024],
                        'Mixed_6f': [batch_size, 17, 17, 1024],
                        'Mixed_6g': [batch_size, 17, 17, 1024],
                        'Mixed_6h': [batch_size, 17, 17, 1024],
                        # Reduction-A block
                        'Mixed_7a': [batch_size, 8, 8, 1536],
                        # 3 x Inception-C blocks
                        'Mixed_7b': [batch_size, 8, 8, 1536],
                        'Mixed_7c': [batch_size, 8, 8, 1536],
                        'Mixed_7d': [batch_size, 8, 8, 1536],
                        # Logits and predictions
                        'AuxLogits': [batch_size, num_classes],
                        'PreLogitsFlatten': [batch_size, 1536],
                        'Logits': [batch_size, num_classes],
                        'Predictions': [batch_size, num_classes]}
    self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys())
    for endpoint_name in endpoints_shapes:
      expected_shape = endpoints_shapes[endpoint_name]
      self.assertTrue(endpoint_name in end_points)
      self.assertListEqual(end_points[endpoint_name].get_shape().as_list(),
                           expected_shape)

  def testBuildBaseNetwork(self):
    batch_size = 5
    height, width = 299, 299
    inputs = tf.random_uniform((batch_size, height, width, 3))
    net, end_points = inception.inception_v4_base(inputs)
    self.assertTrue(net.op.name.startswith(
        'InceptionV4/Mixed_7d'))
    self.assertListEqual(net.get_shape().as_list(), [batch_size, 8, 8, 1536])
    expected_endpoints = [
        'Conv2d_1a_3x3', 'Conv2d_2a_3x3', 'Conv2d_2b_3x3', 'Mixed_3a',
        'Mixed_4a', 'Mixed_5a', 'Mixed_5b', 'Mixed_5c', 'Mixed_5d',
        'Mixed_5e', 'Mixed_6a', 'Mixed_6b', 'Mixed_6c', 'Mixed_6d',
        'Mixed_6e', 'Mixed_6f', 'Mixed_6g', 'Mixed_6h', 'Mixed_7a',
        'Mixed_7b', 'Mixed_7c', 'Mixed_7d']
    self.assertItemsEqual(end_points.keys(), expected_endpoints)
    for name, op in end_points.iteritems():
      self.assertTrue(op.name.startswith('InceptionV4/' + name))

  def testBuildOnlyUpToFinalEndpoint(self):
    batch_size = 5
    height, width = 299, 299
    all_endpoints = [
        'Conv2d_1a_3x3', 'Conv2d_2a_3x3', 'Conv2d_2b_3x3', 'Mixed_3a',
        'Mixed_4a', 'Mixed_5a', 'Mixed_5b', 'Mixed_5c', 'Mixed_5d',
        'Mixed_5e', 'Mixed_6a', 'Mixed_6b', 'Mixed_6c', 'Mixed_6d',
        'Mixed_6e', 'Mixed_6f', 'Mixed_6g', 'Mixed_6h', 'Mixed_7a',
        'Mixed_7b', 'Mixed_7c', 'Mixed_7d']
    for index, endpoint in enumerate(all_endpoints):
      with tf.Graph().as_default():
        inputs = tf.random_uniform((batch_size, height, width, 3))
        out_tensor, end_points = inception.inception_v4_base(
            inputs, final_endpoint=endpoint)
        self.assertTrue(out_tensor.op.name.startswith(
            'InceptionV4/' + endpoint))
        self.assertItemsEqual(all_endpoints[:index+1], end_points)

  def testVariablesSetDevice(self):
    batch_size = 5
    height, width = 299, 299
    num_classes = 1000
    inputs = tf.random_uniform((batch_size, height, width, 3))
    # Force all Variables to reside on the device.
    with tf.variable_scope('on_cpu'), tf.device('/cpu:0'):
      inception.inception_v4(inputs, num_classes)
    with tf.variable_scope('on_gpu'), tf.device('/gpu:0'):
      inception.inception_v4(inputs, num_classes)
149
    for v in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='on_cpu'):
Alex Kurakin's avatar
Alex Kurakin committed
150
      self.assertDeviceEqual(v.device, '/cpu:0')
151
    for v in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='on_gpu'):
Alex Kurakin's avatar
Alex Kurakin committed
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
      self.assertDeviceEqual(v.device, '/gpu:0')

  def testHalfSizeImages(self):
    batch_size = 5
    height, width = 150, 150
    num_classes = 1000
    inputs = tf.random_uniform((batch_size, height, width, 3))
    logits, end_points = inception.inception_v4(inputs, num_classes)
    self.assertTrue(logits.op.name.startswith('InceptionV4/Logits'))
    self.assertListEqual(logits.get_shape().as_list(),
                         [batch_size, num_classes])
    pre_pool = end_points['Mixed_7d']
    self.assertListEqual(pre_pool.get_shape().as_list(),
                         [batch_size, 3, 3, 1536])

  def testUnknownBatchSize(self):
    batch_size = 1
    height, width = 299, 299
    num_classes = 1000
    with self.test_session() as sess:
      inputs = tf.placeholder(tf.float32, (None, height, width, 3))
      logits, _ = inception.inception_v4(inputs, num_classes)
      self.assertTrue(logits.op.name.startswith('InceptionV4/Logits'))
      self.assertListEqual(logits.get_shape().as_list(),
                           [None, num_classes])
      images = tf.random_uniform((batch_size, height, width, 3))
178
      sess.run(tf.global_variables_initializer())
Alex Kurakin's avatar
Alex Kurakin committed
179
180
181
182
183
184
185
186
187
188
189
190
191
      output = sess.run(logits, {inputs: images.eval()})
      self.assertEquals(output.shape, (batch_size, num_classes))

  def testEvaluation(self):
    batch_size = 2
    height, width = 299, 299
    num_classes = 1000
    with self.test_session() as sess:
      eval_inputs = tf.random_uniform((batch_size, height, width, 3))
      logits, _ = inception.inception_v4(eval_inputs,
                                         num_classes,
                                         is_training=False)
      predictions = tf.argmax(logits, 1)
192
      sess.run(tf.global_variables_initializer())
Alex Kurakin's avatar
Alex Kurakin committed
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
      output = sess.run(predictions)
      self.assertEquals(output.shape, (batch_size,))

  def testTrainEvalWithReuse(self):
    train_batch_size = 5
    eval_batch_size = 2
    height, width = 150, 150
    num_classes = 1000
    with self.test_session() as sess:
      train_inputs = tf.random_uniform((train_batch_size, height, width, 3))
      inception.inception_v4(train_inputs, num_classes)
      eval_inputs = tf.random_uniform((eval_batch_size, height, width, 3))
      logits, _ = inception.inception_v4(eval_inputs,
                                         num_classes,
                                         is_training=False,
                                         reuse=True)
      predictions = tf.argmax(logits, 1)
210
      sess.run(tf.global_variables_initializer())
Alex Kurakin's avatar
Alex Kurakin committed
211
212
213
214
215
216
      output = sess.run(predictions)
      self.assertEquals(output.shape, (eval_batch_size,))


if __name__ == '__main__':
  tf.test.main()