inputs.py 18.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Model input function for tf-learn object detection model."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import functools

import tensorflow as tf
from object_detection.builders import dataset_builder
25
26
from object_detection.builders import image_resizer_builder
from object_detection.builders import model_builder
27
from object_detection.builders import preprocessor_builder
28
from object_detection.core import preprocessor
29
30
31
32
from object_detection.core import standard_fields as fields
from object_detection.data_decoders import tf_example_decoder
from object_detection.protos import eval_pb2
from object_detection.protos import input_reader_pb2
33
from object_detection.protos import model_pb2
34
from object_detection.protos import train_pb2
35
from object_detection.utils import config_util
36
37
38
from object_detection.utils import dataset_util
from object_detection.utils import ops as util_ops

39
40
HASH_KEY = 'hash'
HASH_BINS = 1 << 31
41
42
43
SERVING_FED_EXAMPLE_KEY = 'serialized_example'


44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
def transform_input_data(tensor_dict,
                         model_preprocess_fn,
                         image_resizer_fn,
                         num_classes,
                         data_augmentation_fn=None,
                         merge_multiple_boxes=False,
                         retain_original_image=False):
  """A single function that is responsible for all input data transformations.

  Data transformation functions are applied in the following order.
  1. data_augmentation_fn (optional): applied on tensor_dict.
  2. model_preprocess_fn: applied only on image tensor in tensor_dict.
  3. image_resizer_fn: applied only on instance mask tensor in tensor_dict.
  4. one_hot_encoding: applied to classes tensor in tensor_dict.
  5. merge_multiple_boxes (optional): when groundtruth boxes are exactly the
     same they can be merged into a single box with an associated k-hot class
     label.

  Args:
    tensor_dict: dictionary containing input tensors keyed by
      fields.InputDataFields.
    model_preprocess_fn: model's preprocess function to apply on image tensor.
      This function must take in a 4-D float tensor and return a 4-D preprocess
      float tensor and a tensor containing the true image shape.
    image_resizer_fn: image resizer function to apply on groundtruth instance
      masks. This function must take a 4-D float tensor of image and a 4-D
      tensor of instances masks and return resized version of these along with
      the true shapes.
    num_classes: number of max classes to one-hot (or k-hot) encode the class
      labels.
    data_augmentation_fn: (optional) data augmentation function to apply on
      input `tensor_dict`.
    merge_multiple_boxes: (optional) whether to merge multiple groundtruth boxes
      and classes for a given image if the boxes are exactly the same.
    retain_original_image: (optional) whether to retain original image in the
      output dictionary.

  Returns:
    A dictionary keyed by fields.InputDataFields containing the tensors obtained
    after applying all the transformations.
  """
  if retain_original_image:
    tensor_dict[fields.InputDataFields.
                original_image] = tensor_dict[fields.InputDataFields.image]

  # Apply data augmentation ops.
  if data_augmentation_fn is not None:
    tensor_dict = data_augmentation_fn(tensor_dict)

  # Apply model preprocessing ops and resize instance masks.
  image = tf.expand_dims(
      tf.to_float(tensor_dict[fields.InputDataFields.image]), axis=0)
  preprocessed_resized_image, true_image_shape = model_preprocess_fn(image)
  tensor_dict[fields.InputDataFields.image] = tf.squeeze(
      preprocessed_resized_image, axis=0)
  tensor_dict[fields.InputDataFields.true_image_shape] = tf.squeeze(
      true_image_shape, axis=0)
  if fields.InputDataFields.groundtruth_instance_masks in tensor_dict:
    masks = tensor_dict[fields.InputDataFields.groundtruth_instance_masks]
    _, resized_masks, _ = image_resizer_fn(image, masks)
    tensor_dict[fields.InputDataFields.
                groundtruth_instance_masks] = resized_masks

  # Transform groundtruth classes to one hot encodings.
  label_offset = 1
  zero_indexed_groundtruth_classes = tensor_dict[
      fields.InputDataFields.groundtruth_classes] - label_offset
  tensor_dict[fields.InputDataFields.groundtruth_classes] = tf.one_hot(
      zero_indexed_groundtruth_classes, num_classes)

  if merge_multiple_boxes:
    merged_boxes, merged_classes, _ = util_ops.merge_boxes_with_multiple_labels(
        tensor_dict[fields.InputDataFields.groundtruth_boxes],
        zero_indexed_groundtruth_classes, num_classes)
    tensor_dict[fields.InputDataFields.groundtruth_boxes] = merged_boxes
    tensor_dict[fields.InputDataFields.groundtruth_classes] = merged_classes

  return tensor_dict


def augment_input_data(tensor_dict, data_augmentation_options):
  """Applies data augmentation ops to input tensors.

  Args:
    tensor_dict: A dictionary of input tensors keyed by fields.InputDataFields.
    data_augmentation_options: A list of tuples, where each tuple contains a
      function and a dictionary that contains arguments and their values.
      Usually, this is the output of core/preprocessor.build.

  Returns:
    A dictionary of tensors obtained by applying data augmentation ops to the
    input tensor dictionary.
  """
  tensor_dict[fields.InputDataFields.image] = tf.expand_dims(
      tf.to_float(tensor_dict[fields.InputDataFields.image]), 0)

  include_instance_masks = (fields.InputDataFields.groundtruth_instance_masks
                            in tensor_dict)
  include_keypoints = (fields.InputDataFields.groundtruth_keypoints
                       in tensor_dict)
  tensor_dict = preprocessor.preprocess(
      tensor_dict, data_augmentation_options,
      func_arg_map=preprocessor.get_default_func_arg_map(
          include_instance_masks=include_instance_masks,
          include_keypoints=include_keypoints))
  tensor_dict[fields.InputDataFields.image] = tf.squeeze(
      tensor_dict[fields.InputDataFields.image], axis=0)
  return tensor_dict


def create_train_input_fn(train_config, train_input_config,
                          model_config):
156
157
158
159
160
  """Creates a train `input` function for `Estimator`.

  Args:
    train_config: A train_pb2.TrainConfig.
    train_input_config: An input_reader_pb2.InputReader.
161
    model_config: A model_pb2.DetectionModel.
162
163
164
165
166

  Returns:
    `input_fn` for `Estimator` in TRAIN mode.
  """

167
  def _train_input_fn(params=None):
168
169
    """Returns `features` and `labels` tensor dictionaries for training.

170
171
172
    Args:
      params: Parameter dictionary passed from the estimator.

173
174
    Returns:
      features: Dictionary of feature tensors.
175
176
177
178
179
180
181
        features[fields.InputDataFields.image] is a [batch_size, H, W, C]
          float32 tensor with preprocessed images.
        features[HASH_KEY] is a [batch_size] int32 tensor representing unique
          identifiers for the images.
        features[fields.InputDataFields.true_image_shape] is a [batch_size, 3]
          int32 tensor representing the true image shapes, as preprocessed
          images could be padded.
182
      labels: Dictionary of groundtruth tensors.
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
        labels[fields.InputDataFields.num_groundtruth_boxes] is a [batch_size]
          int32 tensor indicating the number of groundtruth boxes.
        labels[fields.InputDataFields.groundtruth_boxes] is a
          [batch_size, num_boxes, 4] float32 tensor containing the corners of
          the groundtruth boxes.
        labels[fields.InputDataFields.groundtruth_classes] is a
          [batch_size, num_boxes, num_classes] float32 one-hot tensor of
          classes.
        labels[fields.InputDataFields.groundtruth_weights] is a
          [batch_size, num_boxes] float32 tensor containing groundtruth weights
          for the boxes.
        -- Optional --
        labels[fields.InputDataFields.groundtruth_instance_masks] is a
          [batch_size, num_boxes, H, W] float32 tensor containing only binary
          values, which represent instance masks for objects.
        labels[fields.InputDataFields.groundtruth_keypoints] is a
          [batch_size, num_boxes, num_keypoints, 2] float32 tensor containing
          keypoints for each box.
201
202
203
204
205
206
207
208
209
210
211

    Raises:
      TypeError: if the `train_config` or `train_input_config` are not of the
        correct type.
    """
    if not isinstance(train_config, train_pb2.TrainConfig):
      raise TypeError('For training mode, the `train_config` must be a '
                      'train_pb2.TrainConfig.')
    if not isinstance(train_input_config, input_reader_pb2.InputReader):
      raise TypeError('The `train_input_config` must be a '
                      'input_reader_pb2.InputReader.')
212
213
214
    if not isinstance(model_config, model_pb2.DetectionModel):
      raise TypeError('The `model_config` must be a '
                      'model_pb2.DetectionModel.')
215
216
217
218
219

    data_augmentation_options = [
        preprocessor_builder.build(step)
        for step in train_config.data_augmentation_options
    ]
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
    data_augmentation_fn = functools.partial(
        augment_input_data, data_augmentation_options=data_augmentation_options)

    model = model_builder.build(model_config, is_training=True)
    image_resizer_config = config_util.get_image_resizer_config(model_config)
    image_resizer_fn = image_resizer_builder.build(image_resizer_config)

    transform_data_fn = functools.partial(
        transform_input_data, model_preprocess_fn=model.preprocess,
        image_resizer_fn=image_resizer_fn,
        num_classes=config_util.get_number_of_classes(model_config),
        data_augmentation_fn=data_augmentation_fn)
    dataset = dataset_builder.build(
        train_input_config,
        transform_input_data_fn=transform_data_fn,
        batch_size=params['batch_size'] if params else train_config.batch_size,
        max_num_boxes=train_config.max_number_of_boxes,
        num_classes=config_util.get_number_of_classes(model_config),
        spatial_image_shape=config_util.get_spatial_image_size(
            image_resizer_config))
    tensor_dict = dataset_util.make_initializable_iterator(dataset).get_next()

    hash_from_source_id = tf.string_to_hash_bucket_fast(
        tensor_dict[fields.InputDataFields.source_id], HASH_BINS)
244
    features = {
245
246
247
248
        fields.InputDataFields.image: tensor_dict[fields.InputDataFields.image],
        HASH_KEY: tf.cast(hash_from_source_id, tf.int32),
        fields.InputDataFields.true_image_shape: tensor_dict[
            fields.InputDataFields.true_image_shape]
249
    }
250

251
    labels = {
252
253
254
255
256
257
258
259
        fields.InputDataFields.num_groundtruth_boxes: tensor_dict[
            fields.InputDataFields.num_groundtruth_boxes],
        fields.InputDataFields.groundtruth_boxes: tensor_dict[
            fields.InputDataFields.groundtruth_boxes],
        fields.InputDataFields.groundtruth_classes: tensor_dict[
            fields.InputDataFields.groundtruth_classes],
        fields.InputDataFields.groundtruth_weights: tensor_dict[
            fields.InputDataFields.groundtruth_weights]
260
    }
261
262
263
264
265
266
    if fields.InputDataFields.groundtruth_keypoints in tensor_dict:
      labels[fields.InputDataFields.groundtruth_keypoints] = tensor_dict[
          fields.InputDataFields.groundtruth_keypoints]
    if fields.InputDataFields.groundtruth_instance_masks in tensor_dict:
      labels[fields.InputDataFields.groundtruth_instance_masks] = tensor_dict[
          fields.InputDataFields.groundtruth_instance_masks]
267
268
269
270
271
272

    return features, labels

  return _train_input_fn


273
def create_eval_input_fn(eval_config, eval_input_config, model_config):
274
275
276
277
278
  """Creates an eval `input` function for `Estimator`.

  Args:
    eval_config: An eval_pb2.EvalConfig.
    eval_input_config: An input_reader_pb2.InputReader.
279
    model_config: A model_pb2.DetectionModel.
280
281
282
283
284

  Returns:
    `input_fn` for `Estimator` in EVAL mode.
  """

285
  def _eval_input_fn(params=None):
286
287
    """Returns `features` and `labels` tensor dictionaries for evaluation.

288
289
290
    Args:
      params: Parameter dictionary passed from the estimator.

291
292
    Returns:
      features: Dictionary of feature tensors.
293
294
295
296
297
298
299
300
301
        features[fields.InputDataFields.image] is a [1, H, W, C] float32 tensor
          with preprocessed images.
        features[HASH_KEY] is a [1] int32 tensor representing unique
          identifiers for the images.
        features[fields.InputDataFields.true_image_shape] is a [1, 3]
          int32 tensor representing the true image shapes, as preprocessed
          images could be padded.
        features[fields.InputDataFields.original_image] is a [1, H', W', C]
          float32 tensor with the original image.
302
      labels: Dictionary of groundtruth tensors.
303
304
305
306
307
308
309
310
311
312
313
314
315
316
        labels[fields.InputDataFields.groundtruth_boxes] is a [1, num_boxes, 4]
          float32 tensor containing the corners of the groundtruth boxes.
        labels[fields.InputDataFields.groundtruth_classes] is a
          [num_boxes, num_classes] float32 one-hot tensor of classes.
        labels[fields.InputDataFields.groundtruth_area] is a [1, num_boxes]
          float32 tensor containing object areas.
        labels[fields.InputDataFields.groundtruth_is_crowd] is a [1, num_boxes]
          bool tensor indicating if the boxes enclose a crowd.
        labels[fields.InputDataFields.groundtruth_difficult] is a [1, num_boxes]
          int32 tensor indicating if the boxes represent difficult instances.
        -- Optional --
        labels[fields.InputDataFields.groundtruth_instance_masks] is a
          [1, num_boxes, H, W] float32 tensor containing only binary values,
          which represent instance masks for objects.
317
318
319
320
321

    Raises:
      TypeError: if the `eval_config` or `eval_input_config` are not of the
        correct type.
    """
322
    del params
323
324
    if not isinstance(eval_config, eval_pb2.EvalConfig):
      raise TypeError('For eval mode, the `eval_config` must be a '
325
                      'train_pb2.EvalConfig.')
326
327
328
    if not isinstance(eval_input_config, input_reader_pb2.InputReader):
      raise TypeError('The `eval_input_config` must be a '
                      'input_reader_pb2.InputReader.')
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
    if not isinstance(model_config, model_pb2.DetectionModel):
      raise TypeError('The `model_config` must be a '
                      'model_pb2.DetectionModel.')

    num_classes = config_util.get_number_of_classes(model_config)
    model = model_builder.build(model_config, is_training=False)
    image_resizer_config = config_util.get_image_resizer_config(model_config)
    image_resizer_fn = image_resizer_builder.build(image_resizer_config)

    transform_data_fn = functools.partial(
        transform_input_data, model_preprocess_fn=model.preprocess,
        image_resizer_fn=image_resizer_fn,
        num_classes=num_classes,
        data_augmentation_fn=None,
        retain_original_image=True)
    dataset = dataset_builder.build(eval_input_config,
                                    transform_input_data_fn=transform_data_fn)
    input_dict = dataset_util.make_initializable_iterator(dataset).get_next()

    hash_from_source_id = tf.string_to_hash_bucket_fast(
        input_dict[fields.InputDataFields.source_id], HASH_BINS)
    features = {
        fields.InputDataFields.image:
            input_dict[fields.InputDataFields.image],
        fields.InputDataFields.original_image:
            input_dict[fields.InputDataFields.original_image],
        HASH_KEY: tf.cast(hash_from_source_id, tf.int32),
        fields.InputDataFields.true_image_shape:
            input_dict[fields.InputDataFields.true_image_shape]
    }
359

360
361
362
363
364
365
366
367
368
369
370
371
372
    labels = {
        fields.InputDataFields.groundtruth_boxes:
            input_dict[fields.InputDataFields.groundtruth_boxes],
        fields.InputDataFields.groundtruth_classes:
            input_dict[fields.InputDataFields.groundtruth_classes],
        fields.InputDataFields.groundtruth_area:
            input_dict[fields.InputDataFields.groundtruth_area],
        fields.InputDataFields.groundtruth_is_crowd:
            input_dict[fields.InputDataFields.groundtruth_is_crowd],
        fields.InputDataFields.groundtruth_difficult:
            tf.cast(input_dict[fields.InputDataFields.groundtruth_difficult],
                    tf.int32)
    }
373
    if fields.InputDataFields.groundtruth_instance_masks in input_dict:
374
375
376
377
378
379
380
381
382
383
384
385
      labels[fields.InputDataFields.groundtruth_instance_masks] = input_dict[
          fields.InputDataFields.groundtruth_instance_masks]

    # Add a batch dimension to the tensors.
    features = {
        key: tf.expand_dims(features[key], axis=0)
        for key, feature in features.items()
    }
    labels = {
        key: tf.expand_dims(labels[key], axis=0)
        for key, label in labels.items()
    }
386
387
388
389
390
391

    return features, labels

  return _eval_input_fn


392
def create_predict_input_fn(model_config):
393
394
  """Creates a predict `input` function for `Estimator`.

395
396
397
  Args:
    model_config: A model_pb2.DetectionModel.

398
399
400
401
  Returns:
    `input_fn` for `Estimator` in PREDICT mode.
  """

402
  def _predict_input_fn(params=None):
403
404
    """Decodes serialized tf.Examples and returns `ServingInputReceiver`.

405
406
407
    Args:
      params: Parameter dictionary passed from the estimator.

408
409
410
    Returns:
      `ServingInputReceiver`.
    """
411
    del params
412
413
    example = tf.placeholder(dtype=tf.string, shape=[], name='input_feature')

414
415
416
417
    num_classes = config_util.get_number_of_classes(model_config)
    model = model_builder.build(model_config, is_training=False)
    image_resizer_config = config_util.get_image_resizer_config(model_config)
    image_resizer_fn = image_resizer_builder.build(image_resizer_config)
418

419
420
421
422
423
424
425
426
    transform_fn = functools.partial(
        transform_input_data, model_preprocess_fn=model.preprocess,
        image_resizer_fn=image_resizer_fn,
        num_classes=num_classes,
        data_augmentation_fn=None)

    decoder = tf_example_decoder.TfExampleDecoder(load_instance_masks=False)
    input_dict = transform_fn(decoder.decode(example))
427
428
429
430
    images = tf.to_float(input_dict[fields.InputDataFields.image])
    images = tf.expand_dims(images, axis=0)

    return tf.estimator.export.ServingInputReceiver(
431
        features={fields.InputDataFields.image: images},
432
433
434
        receiver_tensors={SERVING_FED_EXAMPLE_KEY: example})

  return _predict_input_fn