optimizer_builder.py 4.29 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Functions to build DetectionModel training optimizers."""

import tensorflow as tf
from object_detection.utils import learning_schedules


22
def build(optimizer_config):
23
24
25
26
27
28
  """Create optimizer based on config.

  Args:
    optimizer_config: A Optimizer proto message.

  Returns:
29
    An optimizer and a list of variables for summary.
30
31
32
33
34
35
36

  Raises:
    ValueError: when using an unsupported input data type.
  """
  optimizer_type = optimizer_config.WhichOneof('optimizer')
  optimizer = None

37
  summary_vars = []
38
39
  if optimizer_type == 'rms_prop_optimizer':
    config = optimizer_config.rms_prop_optimizer
40
41
    learning_rate = _create_learning_rate(config.learning_rate)
    summary_vars.append(learning_rate)
42
    optimizer = tf.train.RMSPropOptimizer(
43
        learning_rate,
44
45
46
47
48
49
        decay=config.decay,
        momentum=config.momentum_optimizer_value,
        epsilon=config.epsilon)

  if optimizer_type == 'momentum_optimizer':
    config = optimizer_config.momentum_optimizer
50
51
    learning_rate = _create_learning_rate(config.learning_rate)
    summary_vars.append(learning_rate)
52
    optimizer = tf.train.MomentumOptimizer(
53
        learning_rate,
54
55
56
57
        momentum=config.momentum_optimizer_value)

  if optimizer_type == 'adam_optimizer':
    config = optimizer_config.adam_optimizer
58
59
60
    learning_rate = _create_learning_rate(config.learning_rate)
    summary_vars.append(learning_rate)
    optimizer = tf.train.AdamOptimizer(learning_rate)
61
62
63
64
65
66
67
68

  if optimizer is None:
    raise ValueError('Optimizer %s not supported.' % optimizer_type)

  if optimizer_config.use_moving_average:
    optimizer = tf.contrib.opt.MovingAverageOptimizer(
        optimizer, average_decay=optimizer_config.moving_average_decay)

69
  return optimizer, summary_vars
70
71


72
def _create_learning_rate(learning_rate_config):
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
  """Create optimizer learning rate based on config.

  Args:
    learning_rate_config: A LearningRate proto message.

  Returns:
    A learning rate.

  Raises:
    ValueError: when using an unsupported input data type.
  """
  learning_rate = None
  learning_rate_type = learning_rate_config.WhichOneof('learning_rate')
  if learning_rate_type == 'constant_learning_rate':
    config = learning_rate_config.constant_learning_rate
88
    learning_rate = tf.constant(config.learning_rate, dtype=tf.float32)
89
90
91
92
93

  if learning_rate_type == 'exponential_decay_learning_rate':
    config = learning_rate_config.exponential_decay_learning_rate
    learning_rate = tf.train.exponential_decay(
        config.initial_learning_rate,
Vivek Rathod's avatar
Vivek Rathod committed
94
        tf.train.get_or_create_global_step(),
95
96
97
98
99
100
101
102
103
104
105
106
        config.decay_steps,
        config.decay_factor,
        staircase=config.staircase)

  if learning_rate_type == 'manual_step_learning_rate':
    config = learning_rate_config.manual_step_learning_rate
    if not config.schedule:
      raise ValueError('Empty learning rate schedule.')
    learning_rate_step_boundaries = [x.step for x in config.schedule]
    learning_rate_sequence = [config.initial_learning_rate]
    learning_rate_sequence += [x.learning_rate for x in config.schedule]
    learning_rate = learning_schedules.manual_stepping(
Vivek Rathod's avatar
Vivek Rathod committed
107
        tf.train.get_or_create_global_step(), learning_rate_step_boundaries,
108
109
        learning_rate_sequence)

Vivek Rathod's avatar
Vivek Rathod committed
110
111
112
113
114
115
116
117
118
  if learning_rate_type == 'cosine_decay_learning_rate':
    config = learning_rate_config.cosine_decay_learning_rate
    learning_rate = learning_schedules.cosine_decay_with_warmup(
        tf.train.get_or_create_global_step(),
        config.learning_rate_base,
        config.total_steps,
        config.warmup_learning_rate,
        config.warmup_steps)

119
120
121
122
  if learning_rate is None:
    raise ValueError('Learning_rate %s not supported.' % learning_rate_type)

  return learning_rate