train_lib.py 4.87 KB
Newer Older
Hongkun Yu's avatar
Hongkun Yu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Multitask training driver library."""
# pytype: disable=attribute-error
import os
from absl import logging
import orbit
import tensorflow as tf
from official.core import base_task
from official.core import base_trainer as core_lib
23
from official.core import train_utils
Hongkun Yu's avatar
Hongkun Yu committed
24
25
26
27
28
from official.modeling.multitask import configs
from official.modeling.multitask import evaluator as evaluator_lib
from official.modeling.multitask import multitask


29
def run_experiment_with_multitask_eval(
Hongkun Yu's avatar
Hongkun Yu committed
30
    *,
Hongkun Yu's avatar
Hongkun Yu committed
31
32
33
34
    distribution_strategy: tf.distribute.Strategy,
    train_task: base_task.Task,
    eval_tasks: multitask.MultiTask,
    mode: str,
Hongkun Yu's avatar
Hongkun Yu committed
35
    params: configs.MultiEvalExperimentConfig,
Hongkun Yu's avatar
Hongkun Yu committed
36
37
38
    model_dir: str,
    run_post_eval: bool = False,
    save_summary: bool = True) -> tf.keras.Model:
Hongkun Yu's avatar
Hongkun Yu committed
39
40
41
42
43
44
45
46
47
48
  """Runs train/eval configured by the experiment params.

  Args:
    distribution_strategy: A distribution distribution_strategy.
    train_task: A base_task.Task instance.
    eval_tasks: A multitask.MultiTask with evaluation tasks.
    mode: A 'str', specifying the mode. Can be 'train', 'eval', 'train_and_eval'
      or 'continuous_eval'.
    params: MultiEvalExperimentConfig instance.
    model_dir: A 'str', a path to store model checkpoints and summaries.
Hongkun Yu's avatar
Hongkun Yu committed
49
50
51
    run_post_eval: Whether to run post eval once after training, metrics logs
      are returned.
    save_summary: Whether to save train and validation summary.
Hongkun Yu's avatar
Hongkun Yu committed
52
53
54
55
56
57
58
59

  Returns:
      model: `tf.keras.Model` instance.
  """

  is_training = 'train' in mode
  is_eval = 'eval' in mode
  with distribution_strategy.scope():
60
61
    optimizer = train_task.create_optimizer(params.trainer.optimizer_config,
                                            params.runtime)
Hongkun Yu's avatar
Hongkun Yu committed
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
    model = train_task.build_model()
    if is_training:
      trainer = core_lib.Trainer(
          config=params,
          task=train_task,
          model=model,
          optimizer=optimizer,
          train=True,
          evaluate=False)
    else:
      trainer = None
    if is_eval:
      evaluator = evaluator_lib.MultiTaskEvaluator(
          task=eval_tasks,
          model=model,
77
78
79
          global_step=trainer.global_step if is_training else None,
          checkpoint_exporter=train_utils.maybe_create_best_ckpt_exporter(
              params, model_dir))
Hongkun Yu's avatar
Hongkun Yu committed
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
    else:
      evaluator = None

  if trainer:
    checkpoint = trainer.checkpoint
    global_step = trainer.global_step
  else:
    checkpoint = evaluator.checkpoint
    global_step = evaluator.global_step

  checkpoint_manager = tf.train.CheckpointManager(
      checkpoint,
      directory=model_dir,
      max_to_keep=params.trainer.max_to_keep,
      step_counter=global_step,
      checkpoint_interval=params.trainer.checkpoint_interval,
      init_fn=trainer.initialize if trainer else None)

  controller = orbit.Controller(
      strategy=distribution_strategy,
      trainer=trainer,
      evaluator=evaluator,
      global_step=global_step,
      steps_per_loop=params.trainer.steps_per_loop,
      checkpoint_manager=checkpoint_manager,
Hongkun Yu's avatar
Hongkun Yu committed
105
106
107
108
109
      summary_dir=os.path.join(model_dir, 'train') if save_summary else None,
      eval_summary_dir=os.path.join(model_dir, 'validation') if
      (save_summary) else None,
      summary_interval=params.trainer.summary_interval if
      (save_summary) else None)
Hongkun Yu's avatar
Hongkun Yu committed
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

  logging.info('Starts to execute mode: %s', mode)
  with distribution_strategy.scope():
    if mode == 'train':
      controller.train(steps=params.trainer.train_steps)
    elif mode == 'train_and_eval':
      controller.train_and_evaluate(
          train_steps=params.trainer.train_steps,
          eval_steps=params.trainer.validation_steps,
          eval_interval=params.trainer.validation_interval)
    elif mode == 'eval':
      controller.evaluate(steps=params.trainer.validation_steps)
    elif mode == 'continuous_eval':

      def timeout_fn():
        if evaluator.global_step.numpy() >= params.trainer.train_steps:
          return True
        return False

      controller.evaluate_continuously(
          steps=params.trainer.validation_steps,
          timeout=params.trainer.continuous_eval_timeout,
          timeout_fn=timeout_fn)
    else:
      raise NotImplementedError('The mode is not implemented: %s' % mode)

Hongkun Yu's avatar
Hongkun Yu committed
136
137
138
139
140
    if run_post_eval:
      return model, evaluator.evaluate(
          tf.convert_to_tensor(params.trainer.validation_steps))
    else:
      return model, {}