train.py 4.82 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
Yeqing Li's avatar
Yeqing Li committed
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

SunJong Park's avatar
SunJong Park committed
15
16
17
18
19
20
21
22
23
24
r"""Training driver.

Commandline:
python -m official.vision.beta.projects.assemblenet.trian \
  --mode=train_and_eval --experiment=assemblenetplus_ucf101 \
  --model_dir='YOUR MODEL SAVE GS BUCKET' \
  --config_file=./official/vision/beta/projects/assemblenet/ \
  --ucf101_assemblenet_plus_tpu.yaml \
  --tpu=TPU_NAME
"""
Yeqing Li's avatar
Yeqing Li committed
25
26
27
28
29
30
31
32
33
34
35
36
37

from absl import app
from absl import flags
from absl import logging
import gin

from official.common import distribute_utils
from official.common import flags as tfm_flags
from official.core import task_factory
from official.core import train_lib
from official.core import train_utils
from official.modeling import performance
# pylint: disable=unused-import
Yeqing Li's avatar
Yeqing Li committed
38
39
40
from official.projects.assemblenet.configs import assemblenet as asn_configs
from official.projects.assemblenet.modeling import assemblenet as asn
from official.projects.assemblenet.modeling import assemblenet_plus as asnp
Yeqing Li's avatar
Yeqing Li committed
41
from official.vision import registry_imports
Yeqing Li's avatar
Yeqing Li committed
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
# pylint: enable=unused-import

FLAGS = flags.FLAGS


def main(_):
  gin.parse_config_files_and_bindings(FLAGS.gin_file, FLAGS.gin_params)
  params = train_utils.parse_configuration(FLAGS)
  model_dir = FLAGS.model_dir
  if 'train' in FLAGS.mode:
    # Pure eval modes do not output yaml files. Otherwise continuous eval job
    # may race against the train job for writing the same file.
    train_utils.serialize_config(params, model_dir)

  if 'train_and_eval' in FLAGS.mode:
    assert (params.task.train_data.feature_shape ==
            params.task.validation_data.feature_shape), (
                f'train {params.task.train_data.feature_shape} != validate '
                f'{params.task.validation_data.feature_shape}')

  if 'assemblenet' in FLAGS.experiment:
SunJong Park's avatar
SunJong Park committed
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
    if 'plus' in FLAGS.experiment:
      if 'eval' in FLAGS.mode:
        # Use the feature shape in validation_data for all jobs. The number of
        # frames in train_data will be used to construct the Assemblenet++
        # model.
        params.task.model.backbone.assemblenet_plus.num_frames = (
            params.task.validation_data.feature_shape[0])
        shape = params.task.validation_data.feature_shape
      else:
        params.task.model.backbone.assemblenet_plus.num_frames = (
            params.task.train_data.feature_shape[0])
        shape = params.task.train_data.feature_shape
      logging.info('mode %r num_frames %r feature shape %r', FLAGS.mode,
                   params.task.model.backbone.assemblenet_plus.num_frames,
                   shape)

Yeqing Li's avatar
Yeqing Li committed
79
    else:
SunJong Park's avatar
SunJong Park committed
80
81
82
83
84
85
86
87
88
89
90
91
      if 'eval' in FLAGS.mode:
        # Use the feature shape in validation_data for all jobs. The number of
        # frames in train_data will be used to construct the Assemblenet model.
        params.task.model.backbone.assemblenet.num_frames = (
            params.task.validation_data.feature_shape[0])
        shape = params.task.validation_data.feature_shape
      else:
        params.task.model.backbone.assemblenet.num_frames = (
            params.task.train_data.feature_shape[0])
        shape = params.task.train_data.feature_shape
      logging.info('mode %r num_frames %r feature shape %r', FLAGS.mode,
                   params.task.model.backbone.assemblenet.num_frames, shape)
Yeqing Li's avatar
Yeqing Li committed
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

  # Sets mixed_precision policy. Using 'mixed_float16' or 'mixed_bfloat16'
  # can have significant impact on model speeds by utilizing float16 in case of
  # GPUs, and bfloat16 in the case of TPUs. loss_scale takes effect only when
  # dtype is float16
  if params.runtime.mixed_precision_dtype:
    performance.set_mixed_precision_policy(params.runtime.mixed_precision_dtype)
  distribution_strategy = distribute_utils.get_distribution_strategy(
      distribution_strategy=params.runtime.distribution_strategy,
      all_reduce_alg=params.runtime.all_reduce_alg,
      num_gpus=params.runtime.num_gpus,
      tpu_address=params.runtime.tpu)
  with distribution_strategy.scope():
    task = task_factory.get_task(params.task, logging_dir=model_dir)

  train_lib.run_experiment(
      distribution_strategy=distribution_strategy,
      task=task,
      mode=FLAGS.mode,
      params=params,
      model_dir=model_dir)

  train_utils.save_gin_config(FLAGS.mode, model_dir)

if __name__ == '__main__':
  tfm_flags.define_flags()
SunJong Park's avatar
SunJong Park committed
118
  flags.mark_flags_as_required(['experiment', 'mode', 'model_dir'])
Yeqing Li's avatar
Yeqing Li committed
119
  app.run(main)