image_classification.py 14.5 KB
Newer Older
Yeqing Li's avatar
Yeqing Li committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Yeqing Li's avatar
Yeqing Li committed
14
15

# Lint as: python3
Abdullah Rashwan's avatar
Abdullah Rashwan committed
16
"""Image classification configuration definition."""
17
import dataclasses
Abdullah Rashwan's avatar
Abdullah Rashwan committed
18
import os
Abdullah Rashwan's avatar
Abdullah Rashwan committed
19
from typing import List, Optional
Abdullah Rashwan's avatar
Abdullah Rashwan committed
20

21
from official.core import config_definitions as cfg
Abdullah Rashwan's avatar
Abdullah Rashwan committed
22
23
24
25
from official.core import exp_factory
from official.modeling import hyperparams
from official.modeling import optimization
from official.vision.beta.configs import common
Abdullah Rashwan's avatar
Abdullah Rashwan committed
26
from official.vision.beta.configs import backbones
Abdullah Rashwan's avatar
Abdullah Rashwan committed
27
28
29
30
31
32
33
34
35
36
37


@dataclasses.dataclass
class DataConfig(cfg.DataConfig):
  """Input config for training."""
  input_path: str = ''
  global_batch_size: int = 0
  is_training: bool = True
  dtype: str = 'float32'
  shuffle_buffer_size: int = 10000
  cycle_length: int = 10
Abdullah Rashwan's avatar
Abdullah Rashwan committed
38
  is_multilabel: bool = False
39
40
41
  aug_rand_hflip: bool = True
  aug_type: Optional[
      common.Augmentation] = None  # Choose from AutoAugment and RandAugment.
42
43
  color_jitter: float = 0.
  random_erasing: Optional[common.RandomErasing] = None
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
44
  file_type: str = 'tfrecord'
Fan Yang's avatar
Fan Yang committed
45
46
  image_field_key: str = 'image/encoded'
  label_field_key: str = 'image/class/label'
Abdullah Rashwan's avatar
Abdullah Rashwan committed
47
  decode_jpeg_only: bool = True
48
  mixup_and_cutmix: Optional[common.MixupAndCutmix] = None
49
  decoder: Optional[common.DataDecoder] = common.DataDecoder()
Abdullah Rashwan's avatar
Abdullah Rashwan committed
50

51
52
53
54
  # Keep for backward compatibility.
  aug_policy: Optional[str] = None  # None, 'autoaug', or 'randaug'.
  randaug_magnitude: Optional[int] = 10

Abdullah Rashwan's avatar
Abdullah Rashwan committed
55
56
57

@dataclasses.dataclass
class ImageClassificationModel(hyperparams.Config):
Pengchong Jin's avatar
Pengchong Jin committed
58
  """The model config."""
Abdullah Rashwan's avatar
Abdullah Rashwan committed
59
60
61
62
63
  num_classes: int = 0
  input_size: List[int] = dataclasses.field(default_factory=list)
  backbone: backbones.Backbone = backbones.Backbone(
      type='resnet', resnet=backbones.ResNet())
  dropout_rate: float = 0.0
Pengchong Jin's avatar
Pengchong Jin committed
64
65
  norm_activation: common.NormActivation = common.NormActivation(
      use_sync_bn=False)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
66
67
  # Adds a BatchNormalization layer pre-GlobalAveragePooling in classification
  add_head_batch_norm: bool = False
68
  kernel_initializer: str = 'random_uniform'
Abdullah Rashwan's avatar
Abdullah Rashwan committed
69
70
71
72
73
74
75


@dataclasses.dataclass
class Losses(hyperparams.Config):
  one_hot: bool = True
  label_smoothing: float = 0.0
  l2_weight_decay: float = 0.0
76
  soft_labels: bool = False
Abdullah Rashwan's avatar
Abdullah Rashwan committed
77
78


Pengchong Jin's avatar
Pengchong Jin committed
79
80
81
82
83
@dataclasses.dataclass
class Evaluation(hyperparams.Config):
  top_k: int = 5


Abdullah Rashwan's avatar
Abdullah Rashwan committed
84
85
@dataclasses.dataclass
class ImageClassificationTask(cfg.TaskConfig):
Pengchong Jin's avatar
Pengchong Jin committed
86
  """The task config."""
Abdullah Rashwan's avatar
Abdullah Rashwan committed
87
88
89
90
  model: ImageClassificationModel = ImageClassificationModel()
  train_data: DataConfig = DataConfig(is_training=True)
  validation_data: DataConfig = DataConfig(is_training=False)
  losses: Losses = Losses()
Pengchong Jin's avatar
Pengchong Jin committed
91
  evaluation: Evaluation = Evaluation()
Abdullah Rashwan's avatar
Abdullah Rashwan committed
92
93
  init_checkpoint: Optional[str] = None
  init_checkpoint_modules: str = 'all'  # all or backbone
Fan Yang's avatar
Fan Yang committed
94
95
  model_output_keys: Optional[List[int]] = dataclasses.field(
      default_factory=list)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125


@exp_factory.register_config_factory('image_classification')
def image_classification() -> cfg.ExperimentConfig:
  """Image classification general."""
  return cfg.ExperimentConfig(
      task=ImageClassificationTask(),
      trainer=cfg.TrainerConfig(),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None'
      ])


IMAGENET_TRAIN_EXAMPLES = 1281167
IMAGENET_VAL_EXAMPLES = 50000
IMAGENET_INPUT_PATH_BASE = 'imagenet-2012-tfrecord'


@exp_factory.register_config_factory('resnet_imagenet')
def image_classification_imagenet() -> cfg.ExperimentConfig:
  """Image classification on imagenet with resnet."""
  train_batch_size = 4096
  eval_batch_size = 4096
  steps_per_epoch = IMAGENET_TRAIN_EXAMPLES // train_batch_size
  config = cfg.ExperimentConfig(
      task=ImageClassificationTask(
          model=ImageClassificationModel(
              num_classes=1001,
              input_size=[224, 224, 3],
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
126
127
              backbone=backbones.Backbone(
                  type='resnet', resnet=backbones.ResNet(model_id=50)),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
128
              norm_activation=common.NormActivation(
Pengchong Jin's avatar
Pengchong Jin committed
129
                  norm_momentum=0.9, norm_epsilon=1e-5, use_sync_bn=False)),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
          losses=Losses(l2_weight_decay=1e-4),
          train_data=DataConfig(
              input_path=os.path.join(IMAGENET_INPUT_PATH_BASE, 'train*'),
              is_training=True,
              global_batch_size=train_batch_size),
          validation_data=DataConfig(
              input_path=os.path.join(IMAGENET_INPUT_PATH_BASE, 'valid*'),
              is_training=False,
              global_batch_size=eval_batch_size)),
      trainer=cfg.TrainerConfig(
          steps_per_loop=steps_per_epoch,
          summary_interval=steps_per_epoch,
          checkpoint_interval=steps_per_epoch,
          train_steps=90 * steps_per_epoch,
          validation_steps=IMAGENET_VAL_EXAMPLES // eval_batch_size,
          validation_interval=steps_per_epoch,
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'sgd',
                  'sgd': {
                      'momentum': 0.9
                  }
              },
              'learning_rate': {
                  'type': 'stepwise',
                  'stepwise': {
                      'boundaries': [
                          30 * steps_per_epoch, 60 * steps_per_epoch,
                          80 * steps_per_epoch
                      ],
                      'values': [
161
162
163
164
                          0.1 * train_batch_size / 256,
                          0.01 * train_batch_size / 256,
                          0.001 * train_batch_size / 256,
                          0.0001 * train_batch_size / 256,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
                      ]
                  }
              },
              'warmup': {
                  'type': 'linear',
                  'linear': {
                      'warmup_steps': 5 * steps_per_epoch,
                      'warmup_learning_rate': 0
                  }
              }
          })),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None'
      ])

  return config


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
@exp_factory.register_config_factory('resnet_rs_imagenet')
def image_classification_imagenet_resnetrs() -> cfg.ExperimentConfig:
  """Image classification on imagenet with resnet-rs."""
  train_batch_size = 4096
  eval_batch_size = 4096
  steps_per_epoch = IMAGENET_TRAIN_EXAMPLES // train_batch_size
  config = cfg.ExperimentConfig(
      task=ImageClassificationTask(
          model=ImageClassificationModel(
              num_classes=1001,
              input_size=[160, 160, 3],
              backbone=backbones.Backbone(
                  type='resnet',
                  resnet=backbones.ResNet(
                      model_id=50,
                      stem_type='v1',
                      resnetd_shortcut=True,
                      replace_stem_max_pool=True,
                      se_ratio=0.25,
                      stochastic_depth_drop_rate=0.0)),
              dropout_rate=0.25,
              norm_activation=common.NormActivation(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
206
207
208
209
                  norm_momentum=0.0,
                  norm_epsilon=1e-5,
                  use_sync_bn=False,
                  activation='swish')),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
210
211
212
213
214
          losses=Losses(l2_weight_decay=4e-5, label_smoothing=0.1),
          train_data=DataConfig(
              input_path=os.path.join(IMAGENET_INPUT_PATH_BASE, 'train*'),
              is_training=True,
              global_batch_size=train_batch_size,
215
216
              aug_type=common.Augmentation(
                  type='randaug', randaug=common.RandAugment(magnitude=10))),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
217
218
219
220
221
222
223
224
          validation_data=DataConfig(
              input_path=os.path.join(IMAGENET_INPUT_PATH_BASE, 'valid*'),
              is_training=False,
              global_batch_size=eval_batch_size)),
      trainer=cfg.TrainerConfig(
          steps_per_loop=steps_per_epoch,
          summary_interval=steps_per_epoch,
          checkpoint_interval=steps_per_epoch,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
225
          train_steps=350 * steps_per_epoch,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
226
227
228
229
230
231
232
233
234
235
          validation_steps=IMAGENET_VAL_EXAMPLES // eval_batch_size,
          validation_interval=steps_per_epoch,
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'sgd',
                  'sgd': {
                      'momentum': 0.9
                  }
              },
              'ema': {
Abdullah Rashwan's avatar
Abdullah Rashwan committed
236
237
                  'average_decay': 0.9999,
                  'trainable_weights_only': False,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
238
239
240
241
              },
              'learning_rate': {
                  'type': 'cosine',
                  'cosine': {
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
242
243
                      'initial_learning_rate': 1.6,
                      'decay_steps': 350 * steps_per_epoch
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
                  }
              },
              'warmup': {
                  'type': 'linear',
                  'linear': {
                      'warmup_steps': 5 * steps_per_epoch,
                      'warmup_learning_rate': 0
                  }
              }
          })),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None'
      ])
  return config


Abdullah Rashwan's avatar
Abdullah Rashwan committed
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
@exp_factory.register_config_factory('revnet_imagenet')
def image_classification_imagenet_revnet() -> cfg.ExperimentConfig:
  """Returns a revnet config for image classification on imagenet."""
  train_batch_size = 4096
  eval_batch_size = 4096
  steps_per_epoch = IMAGENET_TRAIN_EXAMPLES // train_batch_size

  config = cfg.ExperimentConfig(
      task=ImageClassificationTask(
          model=ImageClassificationModel(
              num_classes=1001,
              input_size=[224, 224, 3],
              backbone=backbones.Backbone(
                  type='revnet', revnet=backbones.RevNet(model_id=56)),
              norm_activation=common.NormActivation(
Pengchong Jin's avatar
Pengchong Jin committed
276
                  norm_momentum=0.9, norm_epsilon=1e-5, use_sync_bn=False),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
              add_head_batch_norm=True),
          losses=Losses(l2_weight_decay=1e-4),
          train_data=DataConfig(
              input_path=os.path.join(IMAGENET_INPUT_PATH_BASE, 'train*'),
              is_training=True,
              global_batch_size=train_batch_size),
          validation_data=DataConfig(
              input_path=os.path.join(IMAGENET_INPUT_PATH_BASE, 'valid*'),
              is_training=False,
              global_batch_size=eval_batch_size)),
      trainer=cfg.TrainerConfig(
          steps_per_loop=steps_per_epoch,
          summary_interval=steps_per_epoch,
          checkpoint_interval=steps_per_epoch,
          train_steps=90 * steps_per_epoch,
          validation_steps=IMAGENET_VAL_EXAMPLES // eval_batch_size,
          validation_interval=steps_per_epoch,
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'sgd',
                  'sgd': {
                      'momentum': 0.9
                  }
              },
              'learning_rate': {
                  'type': 'stepwise',
                  'stepwise': {
                      'boundaries': [
                          30 * steps_per_epoch, 60 * steps_per_epoch,
                          80 * steps_per_epoch
                      ],
                      'values': [0.8, 0.08, 0.008, 0.0008]
                  }
              },
              'warmup': {
                  'type': 'linear',
                  'linear': {
                      'warmup_steps': 5 * steps_per_epoch,
                      'warmup_learning_rate': 0
                  }
              }
          })),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None'
      ])

  return config
325
326
327
328
329


@exp_factory.register_config_factory('mobilenet_imagenet')
def image_classification_imagenet_mobilenet() -> cfg.ExperimentConfig:
  """Image classification on imagenet with mobilenet."""
330
331
  train_batch_size = 4096
  eval_batch_size = 4096
332
333
334
335
336
337
338
339
340
341
  steps_per_epoch = IMAGENET_TRAIN_EXAMPLES // train_batch_size
  config = cfg.ExperimentConfig(
      task=ImageClassificationTask(
          model=ImageClassificationModel(
              num_classes=1001,
              dropout_rate=0.2,
              input_size=[224, 224, 3],
              backbone=backbones.Backbone(
                  type='mobilenet',
                  mobilenet=backbones.MobileNet(
342
                      model_id='MobileNetV2', filter_size_scale=1.0)),
343
              norm_activation=common.NormActivation(
Pengchong Jin's avatar
Pengchong Jin committed
344
                  norm_momentum=0.997, norm_epsilon=1e-3, use_sync_bn=False)),
345
          losses=Losses(l2_weight_decay=1e-5, label_smoothing=0.1),
346
347
348
349
350
351
352
353
354
355
356
357
          train_data=DataConfig(
              input_path=os.path.join(IMAGENET_INPUT_PATH_BASE, 'train*'),
              is_training=True,
              global_batch_size=train_batch_size),
          validation_data=DataConfig(
              input_path=os.path.join(IMAGENET_INPUT_PATH_BASE, 'valid*'),
              is_training=False,
              global_batch_size=eval_batch_size)),
      trainer=cfg.TrainerConfig(
          steps_per_loop=steps_per_epoch,
          summary_interval=steps_per_epoch,
          checkpoint_interval=steps_per_epoch,
358
          train_steps=500 * steps_per_epoch,
359
360
361
362
363
364
          validation_steps=IMAGENET_VAL_EXAMPLES // eval_batch_size,
          validation_interval=steps_per_epoch,
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'rmsprop',
                  'rmsprop': {
365
                      'rho': 0.9,
366
367
368
369
370
371
372
                      'momentum': 0.9,
                      'epsilon': 0.002,
                  }
              },
              'learning_rate': {
                  'type': 'exponential',
                  'exponential': {
373
374
375
376
377
378
379
380
                      'initial_learning_rate':
                          0.008 * (train_batch_size // 128),
                      'decay_steps':
                          int(2.5 * steps_per_epoch),
                      'decay_rate':
                          0.98,
                      'staircase':
                          True
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
                  }
              },
              'warmup': {
                  'type': 'linear',
                  'linear': {
                      'warmup_steps': 5 * steps_per_epoch,
                      'warmup_learning_rate': 0
                  }
              },
          })),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None'
      ])

  return config