train.py 2.48 KB
Newer Older
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Hye Yoon's avatar
Hye Yoon committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

Hye Yoon's avatar
Hye Yoon committed
15
16
"""YT8M model training driver."""

17
18
from absl import app
from absl import flags
Hye Yoon's avatar
Hye Yoon committed
19
import gin
20

Hye Yoon's avatar
Hye Yoon committed
21
22
from official.common import distribute_utils
from official.common import flags as tfm_flags
23
24
25
from official.core import task_factory
from official.core import train_lib
from official.core import train_utils
Hye Yoon's avatar
Hye Yoon committed
26
27
28
29
from official.modeling import performance
# pylint: disable=unused-import
from official.vision.beta.projects.yt8m.configs import yt8m
from official.vision.beta.projects.yt8m.tasks import yt8m_task
30
# pylint: enable=unused-import
Hye Yoon's avatar
Hye Yoon committed
31
32
33

FLAGS = flags.FLAGS

34

Hye Yoon's avatar
Hye Yoon committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
def main(_):
  gin.parse_config_files_and_bindings(FLAGS.gin_file, FLAGS.gin_params)
  params = train_utils.parse_configuration(FLAGS)
  model_dir = FLAGS.model_dir
  if 'train' in FLAGS.mode:
    # Pure eval modes do not output yaml files. Otherwise continuous eval job
    # may race against the train job for writing the same file.
    train_utils.serialize_config(params, model_dir)

  # Sets mixed_precision policy. Using 'mixed_float16' or 'mixed_bfloat16'
  # can have significant impact on model speeds by utilizing float16 in case of
  # GPUs, and bfloat16 in the case of TPUs. loss_scale takes effect only when
  # dtype is float16
  if params.runtime.mixed_precision_dtype:
Reed Wanderman-Milne's avatar
Reed Wanderman-Milne committed
49
    performance.set_mixed_precision_policy(params.runtime.mixed_precision_dtype)
Hye Yoon's avatar
Hye Yoon committed
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
  distribution_strategy = distribute_utils.get_distribution_strategy(
      distribution_strategy=params.runtime.distribution_strategy,
      all_reduce_alg=params.runtime.all_reduce_alg,
      num_gpus=params.runtime.num_gpus,
      tpu_address=params.runtime.tpu)
  with distribution_strategy.scope():
    task = task_factory.get_task(params.task, logging_dir=model_dir)

  train_lib.run_experiment(
      distribution_strategy=distribution_strategy,
      task=task,
      mode=FLAGS.mode,
      params=params,
      model_dir=model_dir)

65

Hye Yoon's avatar
Hye Yoon committed
66
67
68
if __name__ == '__main__':
  tfm_flags.define_flags()
  app.run(main)