ncf_test.py 7.38 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests NCF."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math
Reed's avatar
Reed committed
22
import mock
23
24
25
26

import numpy as np
import tensorflow as tf

Reed's avatar
Reed committed
27
from absl.testing import flagsaver
28
from official.recommendation import constants as rconst
29
from official.recommendation import data_pipeline
30
from official.recommendation import neumf_model
31
from official.recommendation import ncf_main
32
33
34


NUM_TRAIN_NEG = 4
35
36
37


class NcfTest(tf.test.TestCase):
Reed's avatar
Reed committed
38
39
40
41
42
43

  @classmethod
  def setUpClass(cls):  # pylint: disable=invalid-name
    super(NcfTest, cls).setUpClass()
    ncf_main.define_ncf_flags()

44
45
46
47
48
49
50
51
52
53
54
55
56
  def setUp(self):
    self.top_k_old = rconst.TOP_K
    self.num_eval_negatives_old = rconst.NUM_EVAL_NEGATIVES
    rconst.NUM_EVAL_NEGATIVES = 2

  def tearDown(self):
    rconst.NUM_EVAL_NEGATIVES = self.num_eval_negatives_old
    rconst.TOP_K = self.top_k_old

  def get_hit_rate_and_ndcg(self, predicted_scores_by_user, items_by_user,
                            top_k=rconst.TOP_K, match_mlperf=False):
    rconst.TOP_K = top_k
    rconst.NUM_EVAL_NEGATIVES = predicted_scores_by_user.shape[1] - 1
57
58
59
60
61
62
63
    batch_size = items_by_user.shape[0]

    users = np.repeat(np.arange(batch_size)[:, np.newaxis],
                      rconst.NUM_EVAL_NEGATIVES + 1, axis=1)
    users, items, duplicate_mask = \
      data_pipeline.BaseDataConstructor._assemble_eval_batch(
          users, items_by_user[:, -1:], items_by_user[:, :-1], batch_size)
64
65
66
67
68
69
70

    g = tf.Graph()
    with g.as_default():
      logits = tf.convert_to_tensor(
          predicted_scores_by_user.reshape((-1, 1)), tf.float32)
      softmax_logits = tf.concat([tf.zeros(logits.shape, dtype=logits.dtype),
                                  logits], axis=1)
71
      duplicate_mask = tf.convert_to_tensor(duplicate_mask, tf.float32)
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

      metric_ops = neumf_model.compute_eval_loss_and_metrics(
          logits=logits, softmax_logits=softmax_logits,
          duplicate_mask=duplicate_mask, num_training_neg=NUM_TRAIN_NEG,
          match_mlperf=match_mlperf).eval_metric_ops

      hr = metric_ops[rconst.HR_KEY]
      ndcg = metric_ops[rconst.NDCG_KEY]

      init = [tf.global_variables_initializer(),
              tf.local_variables_initializer()]

    with self.test_session(graph=g) as sess:
      sess.run(init)
      return sess.run([hr[1], ndcg[1]])

88
89
90
  def test_hit_rate_and_ndcg(self):
    # Test with no duplicate items
    predictions = np.array([
91
92
93
94
        [2., 0., 1.],  # In top 2
        [1., 0., 2.],  # In top 1
        [2., 1., 0.],  # In top 3
        [3., 4., 2.]   # In top 3
95
96
97
    ])
    items = np.array([
        [2, 3, 1],
98
        [3, 1, 2],
99
        [2, 1, 3],
100
        [1, 3, 2],
101
    ])
102
103

    hr, ndcg = self.get_hit_rate_and_ndcg(predictions, items, 1)
104
105
    self.assertAlmostEqual(hr, 1 / 4)
    self.assertAlmostEqual(ndcg, 1 / 4)
106
107

    hr, ndcg = self.get_hit_rate_and_ndcg(predictions, items, 2)
108
109
    self.assertAlmostEqual(hr, 2 / 4)
    self.assertAlmostEqual(ndcg, (1 + math.log(2) / math.log(3)) / 4)
110
111

    hr, ndcg = self.get_hit_rate_and_ndcg(predictions, items, 3)
112
113
114
115
    self.assertAlmostEqual(hr, 4 / 4)
    self.assertAlmostEqual(ndcg, (1 + math.log(2) / math.log(3) +
                                  2 * math.log(2) / math.log(4)) / 4)

116
117
    hr, ndcg = self.get_hit_rate_and_ndcg(predictions, items, 1,
                                          match_mlperf=True)
118
119
    self.assertAlmostEqual(hr, 1 / 4)
    self.assertAlmostEqual(ndcg, 1 / 4)
120
121
122

    hr, ndcg = self.get_hit_rate_and_ndcg(predictions, items, 2,
                                          match_mlperf=True)
123
124
    self.assertAlmostEqual(hr, 2 / 4)
    self.assertAlmostEqual(ndcg, (1 + math.log(2) / math.log(3)) / 4)
125
126
127

    hr, ndcg = self.get_hit_rate_and_ndcg(predictions, items, 3,
                                          match_mlperf=True)
128
129
130
131
132
133
134
    self.assertAlmostEqual(hr, 4 / 4)
    self.assertAlmostEqual(ndcg, (1 + math.log(2) / math.log(3) +
                                  2 * math.log(2) / math.log(4)) / 4)

    # Test with duplicate items. In the MLPerf case, we treat the duplicates as
    # a single item. Otherwise, we treat the duplicates as separate items.
    predictions = np.array([
135
136
137
138
        [2., 2., 3., 1.],  # In top 4. MLPerf: In top 3
        [1., 0., 2., 3.],  # In top 1. MLPerf: In top 1
        [2., 3., 2., 0.],  # In top 4. MLPerf: In top 3
        [2., 4., 2., 3.]   # In top 2. MLPerf: In top 2
139
140
    ])
    items = np.array([
141
142
143
144
        [2, 2, 3, 1],
        [2, 3, 4, 1],
        [2, 3, 2, 1],
        [3, 2, 1, 4],
145
    ])
146
    hr, ndcg = self.get_hit_rate_and_ndcg(predictions, items, 1)
147
148
    self.assertAlmostEqual(hr, 1 / 4)
    self.assertAlmostEqual(ndcg, 1 / 4)
149
150

    hr, ndcg = self.get_hit_rate_and_ndcg(predictions, items, 2)
151
152
    self.assertAlmostEqual(hr, 2 / 4)
    self.assertAlmostEqual(ndcg, (1 + math.log(2) / math.log(3)) / 4)
153
154

    hr, ndcg = self.get_hit_rate_and_ndcg(predictions, items, 3)
155
156
    self.assertAlmostEqual(hr, 2 / 4)
    self.assertAlmostEqual(ndcg, (1 + math.log(2) / math.log(3)) / 4)
157
158

    hr, ndcg = self.get_hit_rate_and_ndcg(predictions, items, 4)
159
160
161
162
    self.assertAlmostEqual(hr, 4 / 4)
    self.assertAlmostEqual(ndcg, (1 + math.log(2) / math.log(3) +
                                  2 * math.log(2) / math.log(5)) / 4)

163
164
    hr, ndcg = self.get_hit_rate_and_ndcg(predictions, items, 1,
                                          match_mlperf=True)
165
166
    self.assertAlmostEqual(hr, 1 / 4)
    self.assertAlmostEqual(ndcg, 1 / 4)
167
168
169

    hr, ndcg = self.get_hit_rate_and_ndcg(predictions, items, 2,
                                          match_mlperf=True)
170
171
    self.assertAlmostEqual(hr, 2 / 4)
    self.assertAlmostEqual(ndcg, (1 + math.log(2) / math.log(3)) / 4)
172
173
174

    hr, ndcg = self.get_hit_rate_and_ndcg(predictions, items, 3,
                                          match_mlperf=True)
175
176
177
    self.assertAlmostEqual(hr, 4 / 4)
    self.assertAlmostEqual(ndcg, (1 + math.log(2) / math.log(3) +
                                  2 * math.log(2) / math.log(4)) / 4)
178
179
180

    hr, ndcg = self.get_hit_rate_and_ndcg(predictions, items, 4,
                                          match_mlperf=True)
181
182
183
184
185
    self.assertAlmostEqual(hr, 4 / 4)
    self.assertAlmostEqual(ndcg, (1 + math.log(2) / math.log(3) +
                                  2 * math.log(2) / math.log(4)) / 4)


Reed's avatar
Reed committed
186
187
188
189
190
191
192
  _BASE_END_TO_END_FLAGS = {
      "batch_size": 1024,
      "train_epochs": 1,
      "use_synthetic_data": True
  }

  @flagsaver.flagsaver(**_BASE_END_TO_END_FLAGS)
193
  @mock.patch.object(rconst, "SYNTHETIC_BATCHES_PER_EPOCH", 100)
Reed's avatar
Reed committed
194
195
196
197
  def test_end_to_end(self):
    ncf_main.main(None)

  @flagsaver.flagsaver(ml_perf=True, **_BASE_END_TO_END_FLAGS)
198
  @mock.patch.object(rconst, "SYNTHETIC_BATCHES_PER_EPOCH", 100)
Reed's avatar
Reed committed
199
200
201
  def test_end_to_end_mlperf(self):
    ncf_main.main(None)

202
203
204
205

if __name__ == "__main__":
  tf.logging.set_verbosity(tf.logging.INFO)
  tf.test.main()