attention.py 10.6 KB
Newer Older
Hongkun Yu's avatar
Hongkun Yu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Keras-based attention layer."""

from __future__ import absolute_import
from __future__ import division
# from __future__ import google_type_annotations
from __future__ import print_function

import math
import tensorflow as tf

from official.nlp.modeling.layers import dense_einsum
from official.nlp.modeling.layers import masked_softmax


@tf.keras.utils.register_keras_serializable(package="Text")
class Attention(tf.keras.layers.Layer):
  """Attention layer.

  This is an implementation of multi-headed attention based on "Attention
  is all you Need". If `from_tensor` and `to_tensor` are the same, then
  this is self-attention. Each timestep in `from_tensor` attends to the
  corresponding sequence in `to_tensor`, and returns a fixed-width vector.

  This function first projects `from_tensor` into a "query" tensor and
  `to_tensor` into "key" and "value" tensors. These are (effectively) a list
  of tensors of length `num_attention_heads`, where each tensor is of shape
  [batch_size, seq_length, size_per_head].

  Then, the query and key tensors are dot-producted and scaled. These are
  softmaxed to obtain attention probabilities. The value tensors are then
  interpolated by these probabilities, then concatenated back to a single
  tensor and returned.

  Attributes:
    num_heads: Number of attention heads.
    head_size: Size of each attention head.
    dropout: Dropout probability.
    kernel_initializer: Initializer for dense layer kernels.
    bias_initializer: Initializer for dense layer biases.
    kernel_regularizer: Regularizer for dense layer kernels.
    bias_regularizer: Regularizer for dense layer biases.
    activity_regularizer: Regularizer for dense layer activity.
    kernel_constraint: Constraint for dense layer kernels.
    bias_constraint: Constraint for dense layer kernels.
  """

  def __init__(self,
               num_heads,
               head_size,
               dropout_rate=0.0,
               kernel_initializer="glorot_uniform",
               bias_initializer="zeros",
               kernel_regularizer=None,
               bias_regularizer=None,
               activity_regularizer=None,
               kernel_constraint=None,
               bias_constraint=None,
               **kwargs):
    super(Attention, self).__init__(**kwargs)
    self._num_heads = num_heads
    self._head_size = head_size
    self._dropout_rate = dropout_rate
    self._kernel_initializer = tf.keras.initializers.get(kernel_initializer)
    self._bias_initializer = tf.keras.initializers.get(bias_initializer)
    self._kernel_regularizer = tf.keras.regularizers.get(kernel_regularizer)
    self._bias_regularizer = tf.keras.regularizers.get(bias_regularizer)
    self._kernel_constraint = tf.keras.constraints.get(kernel_constraint)
    self._bias_constraint = tf.keras.constraints.get(bias_constraint)

    self._query_dense = dense_einsum.DenseEinsum(
        output_shape=(self._num_heads, self._head_size),
        kernel_initializer=self._kernel_initializer,
        bias_initializer=self._bias_initializer,
        kernel_regularizer=self._kernel_regularizer,
        bias_regularizer=self._bias_regularizer,
        activity_regularizer=self._activity_regularizer,
        kernel_constraint=self._kernel_constraint,
        bias_constraint=self._bias_constraint,
        name="query")

    self._key_dense = dense_einsum.DenseEinsum(
        output_shape=(self._num_heads, self._head_size),
        kernel_initializer=self._kernel_initializer,
        bias_initializer=self._bias_initializer,
        kernel_regularizer=self._kernel_regularizer,
        bias_regularizer=self._bias_regularizer,
        activity_regularizer=self._activity_regularizer,
        kernel_constraint=self._kernel_constraint,
        bias_constraint=self._bias_constraint,
        name="key")

    self._value_dense = dense_einsum.DenseEinsum(
        output_shape=(self._num_heads, self._head_size),
        kernel_initializer=self._kernel_initializer,
        bias_initializer=self._bias_initializer,
        kernel_regularizer=self._kernel_regularizer,
        bias_regularizer=self._bias_regularizer,
        activity_regularizer=self._activity_regularizer,
        kernel_constraint=self._kernel_constraint,
        bias_constraint=self._bias_constraint,
        name="value")

    self._masked_softmax = masked_softmax.MaskedSoftmax(mask_expansion_axes=[1])

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
119
    self._dropout = tf.keras.layers.Dropout(rate=self._dropout_rate)
Hongkun Yu's avatar
Hongkun Yu committed
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182

  def get_config(self):
    config = {
        "num_heads":
            self._num_heads,
        "head_size":
            self._head_size,
        "dropout_rate":
            self._dropout_rate,
        "kernel_initializer":
            tf.keras.initializers.serialize(self._kernel_initializer),
        "bias_initializer":
            tf.keras.initializers.serialize(self._bias_initializer),
        "kernel_regularizer":
            tf.keras.regularizers.serialize(self._kernel_regularizer),
        "bias_regularizer":
            tf.keras.regularizers.serialize(self._bias_regularizer),
        "activity_regularizer":
            tf.keras.regularizers.serialize(self._activity_regularizer),
        "kernel_constraint":
            tf.keras.constraints.serialize(self._kernel_constraint),
        "bias_constraint":
            tf.keras.constraints.serialize(self._bias_constraint)
    }
    base_config = super(Attention, self).get_config()
    return dict(list(base_config.items()) + list(config.items()))

  def call(self, inputs):
    from_tensor = inputs[0]
    to_tensor = inputs[1]
    attention_mask = inputs[2] if len(inputs) == 3 else None

    # Scalar dimensions referenced here:
    #   B = batch size (number of sequences)
    #   F = `from_tensor` sequence length
    #   T = `to_tensor` sequence length
    #   N = `num_attention_heads`
    #   H = `size_per_head`
    # `query_tensor` = [B, F, N ,H]
    query_tensor = self._query_dense(from_tensor)

    # `key_tensor` = [B, T, N, H]
    key_tensor = self._key_dense(to_tensor)

    # `value_tensor` = [B, T, N, H]
    value_tensor = self._value_dense(to_tensor)

    # Take the dot product between "query" and "key" to get the raw
    # attention scores.
    attention_scores = tf.einsum("BTNH,BFNH->BNFT", key_tensor, query_tensor)
    attention_scores = tf.multiply(attention_scores,
                                   1.0 / math.sqrt(float(self._head_size)))

    # Normalize the attention scores to probabilities.
    # `attention_probs` = [B, N, F, T]
    attention_probs = self._masked_softmax([attention_scores, attention_mask])

    # This is actually dropping out entire tokens to attend to, which might
    # seem a bit unusual, but is taken from the original Transformer paper.
    attention_probs = self._dropout(attention_probs)

    # `context_layer` = [B, F, N, H]
    return tf.einsum("BNFT,BTNH->BFNH", attention_probs, value_tensor)
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264


@tf.keras.utils.register_keras_serializable(package="Text")
class CachedAttention(Attention):
  """Attention layer with cache used for auto-agressive decoding.

  Attributes:
    num_heads: Number of attention heads.
    head_size: Size of each attention head.
    **kwargs: Other keyword arguments inherit from `Attention` class.
  """

  def __init__(self, num_heads, head_size, **kwargs):
    super(CachedAttention, self).__init__(num_heads, head_size, **kwargs)

  def _update_cache(self, key_tensor, value_tensor, cache, decode_loop_step):
    """Updates cache states and gets full-length key/value tensors."""
    # Combines cached keys and values with new keys and values.
    if decode_loop_step is not None:
      # TPU special case.
      key_seq_dim = cache["key"].shape.as_list()[1]
      indices = tf.reshape(
          tf.one_hot(decode_loop_step, key_seq_dim, dtype=key_tensor.dtype),
          [1, key_seq_dim, 1, 1])
      key_tensor = cache["key"] + key_tensor * indices
      value_seq_dim = cache["value"].shape.as_list()[1]
      indices = tf.reshape(
          tf.one_hot(decode_loop_step, value_seq_dim, dtype=value_tensor.dtype),
          [1, value_seq_dim, 1, 1])
      value_tensor = cache["value"] + value_tensor * indices
    else:
      key_tensor = tf.concat(
          [tf.cast(cache["key"], key_tensor.dtype), key_tensor], axis=1)
      value_tensor = tf.concat(
          [tf.cast(cache["value"], value_tensor.dtype), value_tensor], axis=1)

    # Update cache
    cache["key"] = key_tensor
    cache["value"] = value_tensor

    return key_tensor, value_tensor

  def call(self, inputs, decode_loop_step=None):
    from_tensor = inputs[0]
    to_tensor = inputs[1]
    attention_mask = inputs[2] if len(inputs) >= 3 else None
    cache = inputs[3] if len(inputs) >= 4 else None
    # Scalar dimensions referenced here:
    #   B = batch size (number of sequences)
    #   F = `from_tensor` sequence length
    #   T = `to_tensor` sequence length
    #   N = `num_attention_heads`
    #   H = `size_per_head`
    # `query_tensor` = [B, F, N ,H]
    query_tensor = self._query_dense(from_tensor)

    # `key_tensor` = [B, T, N, H]
    key_tensor = self._key_dense(to_tensor)

    # `value_tensor` = [B, T, N, H]
    value_tensor = self._value_dense(to_tensor)

    if cache:
      key_tensor, value_tensor = self._update_cache(key_tensor, value_tensor,
                                                    cache, decode_loop_step)

    # Take the dot product between "query" and "key" to get the raw
    # attention scores.
    attention_scores = tf.einsum("BTNH,BFNH->BNFT", key_tensor, query_tensor)
    attention_scores = tf.multiply(attention_scores,
                                   1.0 / math.sqrt(float(self._head_size)))

    # Normalize the attention scores to probabilities.
    # `attention_probs` = [B, N, F, T]
    attention_probs = self._masked_softmax([attention_scores, attention_mask])

    # This is actually dropping out entire tokens to attend to, which might
    # seem a bit unusual, but is taken from the original Transformer paper.
    attention_probs = self._dropout(attention_probs)

    # `context_layer` = [B, F, N, H]
    return tf.einsum("BNFT,BTNH->BFNH", attention_probs, value_tensor), cache