semantic_segmentation.py 6.57 KB
Newer Older
Abdullah Rashwan's avatar
Abdullah Rashwan committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Image segmentation configuration definition."""
import os
from typing import List, Union, Optional
import dataclasses
from official.core import exp_factory
from official.modeling import hyperparams
from official.modeling import optimization
from official.modeling.hyperparams import config_definitions as cfg
from official.vision.beta.configs import backbones
from official.vision.beta.configs import common
from official.vision.beta.configs import decoders


@dataclasses.dataclass
class DataConfig(cfg.DataConfig):
  """Input config for training."""
  input_path: str = ''
  global_batch_size: int = 0
  is_training: bool = True
  dtype: str = 'float32'
  shuffle_buffer_size: int = 1000
  cycle_length: int = 10
  resize_eval_groundtruth: bool = True
  groundtruth_padded_size: List[int] = dataclasses.field(default_factory=list)
  aug_scale_min: float = 1.0
  aug_scale_max: float = 1.0


@dataclasses.dataclass
class SegmentationHead(hyperparams.Config):
  level: int = 3
  num_convs: int = 2
  num_filters: int = 256
  upsample_factor: int = 1


@dataclasses.dataclass
class ImageSegmentationModel(hyperparams.Config):
  """Image segmentation model config."""
  num_classes: int = 0
  input_size: List[int] = dataclasses.field(default_factory=list)
  min_level: int = 3
  max_level: int = 6
  head: SegmentationHead = SegmentationHead()
  backbone: backbones.Backbone = backbones.Backbone(
      type='resnet', resnet=backbones.ResNet())
  decoder: decoders.Decoder = decoders.Decoder(type='identity')
  norm_activation: common.NormActivation = common.NormActivation()


@dataclasses.dataclass
class Losses(hyperparams.Config):
  label_smoothing: float = 0.1
  ignore_label: int = 255
  class_weights: List[float] = dataclasses.field(default_factory=list)
  l2_weight_decay: float = 0.0
  use_groundtruth_dimension: bool = True


@dataclasses.dataclass
class ImageSegmentationTask(cfg.TaskConfig):
  """The model config."""
  model: ImageSegmentationModel = ImageSegmentationModel()
  train_data: DataConfig = DataConfig(is_training=True)
  validation_data: DataConfig = DataConfig(is_training=False)
  losses: Losses = Losses()
  gradient_clip_norm: float = 0.0
  init_checkpoint: Optional[str] = None
  init_checkpoint_modules: Union[
      str, List[str]] = 'all'  # all, backbone, and/or decoder


@exp_factory.register_config_factory('semantic_segmentation')
def semantic_segmentation() -> cfg.ExperimentConfig:
  """Semantic segmentation general."""
  return cfg.ExperimentConfig(
      task=ImageSegmentationModel(),
      trainer=cfg.TrainerConfig(),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None'
      ])

# PASCAL VOC 2012 Dataset
PASCAL_TRAIN_EXAMPLES = 10582
PASCAL_VAL_EXAMPLES = 1449
PASCAL_INPUT_PATH_BASE = 'pascal_voc_seg'


@exp_factory.register_config_factory('seg_deeplabv3_pascal')
def seg_deeplabv3_pascal() -> cfg.ExperimentConfig:
  """Image segmentation on imagenet with resnet deeplabv3."""
  train_batch_size = 16
  eval_batch_size = 8
  steps_per_epoch = PASCAL_TRAIN_EXAMPLES // train_batch_size
  config = cfg.ExperimentConfig(
      task=ImageSegmentationTask(
          model=ImageSegmentationModel(
              num_classes=21,
              # TODO(arashwan): test changing size to 513 to match deeplab.
              input_size=[512, 512, 3],
              backbone=backbones.Backbone(
                  type='dilated_resnet', dilated_resnet=backbones.DilatedResNet(
                      model_id=50, output_stride=8)),
              decoder=decoders.Decoder(
                  type='aspp', aspp=decoders.ASPP(
                      level=3, dilation_rates=[12, 24, 36])),
              head=SegmentationHead(level=3, num_convs=0),
              norm_activation=common.NormActivation(
                  activation='swish',
                  norm_momentum=0.9997,
                  norm_epsilon=1e-3,
                  use_sync_bn=True)),
          losses=Losses(l2_weight_decay=1e-4),
          train_data=DataConfig(
              input_path=os.path.join(PASCAL_INPUT_PATH_BASE, 'train_aug*'),
              is_training=True,
              global_batch_size=train_batch_size,
              aug_scale_min=0.5,
              aug_scale_max=2.0),
          validation_data=DataConfig(
              input_path=os.path.join(PASCAL_INPUT_PATH_BASE, 'val*'),
              is_training=False,
              global_batch_size=eval_batch_size,
              resize_eval_groundtruth=False,
              groundtruth_padded_size=[512, 512]),
          # resnet50
          init_checkpoint='gs://cloud-tpu-checkpoints/vision-2.0/deeplab/deeplab_resnet50_imagenet/ckpt-62400',
          init_checkpoint_modules='backbone'),
      trainer=cfg.TrainerConfig(
          steps_per_loop=steps_per_epoch,
          summary_interval=steps_per_epoch,
          checkpoint_interval=steps_per_epoch,
          train_steps=45 * steps_per_epoch,
          validation_steps=PASCAL_VAL_EXAMPLES // eval_batch_size,
          validation_interval=steps_per_epoch,
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'sgd',
                  'sgd': {
                      'momentum': 0.9
                  }
              },
              'learning_rate': {
                  'type': 'polynomial',
                  'polynomial': {
                      'initial_learning_rate': 0.007,
                      'decay_steps': 45 * steps_per_epoch,
                      'end_learning_rate': 0.0,
                      'power': 0.9
                  }
              },
              'warmup': {
                  'type': 'linear',
                  'linear': {
                      'warmup_steps': 5 * steps_per_epoch,
                      'warmup_learning_rate': 0
                  }
              }
          })),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None'
      ])

  return config