local_train.py 2.81 KB
Newer Older
ofirnachum's avatar
ofirnachum committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Script to run run_train.py locally.
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import random
from subprocess import call
import sys

CONFIGS_PATH = './configs'
CONTEXT_CONFIGS_PATH = './context/configs'

def main():
31
  bb = '.'
ofirnachum's avatar
ofirnachum committed
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
  base_num_args = 6
  if len(sys.argv) < base_num_args:
    print(
        "usage: python %s <exp_name> <context_setting_gin> <env_context_gin> "
        "<agent_gin> <suite> [params...]"
        % sys.argv[0])
    sys.exit(0)
  exp = sys.argv[1]  # Name for experiment, e.g. 'test001'
  context_setting = sys.argv[2]  # Context setting, e.g. 'hiro_orig'
  context = sys.argv[3]  # Environment-specific context, e.g. 'ant_maze'
  agent = sys.argv[4]  # Agent settings, e.g. 'base_uvf'
  assert sys.argv[5] in ["suite"], "args[5] must be `suite'"
  suite = ""
  binary = "python {bb}/run_train{suite}.py ".format(bb=bb, suite=suite)

  h = os.environ["HOME"]
  ucp = CONFIGS_PATH
  ccp = CONTEXT_CONFIGS_PATH
  extra = ''
  port = random.randint(2000, 8000)
  command_str = ("{binary} "
                 "--train_dir={h}/tmp/{context_setting}/{context}/{agent}/{exp}/train "
                 "--config_file={ucp}/{agent}.gin "
                 "--config_file={ucp}/train_{extra}uvf.gin "
                 "--config_file={ccp}/{context_setting}.gin "
                 "--config_file={ccp}/{context}.gin "
                 "--summarize_gradients=False "
                 "--save_interval_secs=60 "
                 "--save_summaries_secs=1 "
                 "--master=local "
                 "--alsologtostderr ").format(h=h, ucp=ucp,
                                              context_setting=context_setting,
                                              context=context, ccp=ccp,
                                              suite=suite, agent=agent, extra=extra,
                                              exp=exp, binary=binary,
                                              port=port)
  for extra_arg in sys.argv[base_num_args:]:
    command_str += "--params='%s' " % extra_arg

  print(command_str)
  call(command_str, shell=True)


if __name__ == "__main__":
  main()