misc.py 10.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the 'License');
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an 'AS IS' BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Misc for Transformer."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

Toby Boyd's avatar
Toby Boyd committed
21
# pylint: disable=g-bad-import-order
22
from absl import flags
Toby Boyd's avatar
Toby Boyd committed
23
import tensorflow as tf
24

25
26
27
28
# TODO(tianlin) Import internal library. Remove this when some functions for
# different TF versions are fixed.
from tensorflow.python import tf2 as tf2_internal

29
30
from official.transformer.model import model_params
from official.utils.flags import core as flags_core
Toby Boyd's avatar
Toby Boyd committed
31
32
33
from official.utils.misc import keras_utils

FLAGS = flags.FLAGS
34
35

PARAMS_MAP = {
Toby Boyd's avatar
Toby Boyd committed
36
37
38
    'tiny': model_params.TINY_PARAMS,
    'base': model_params.BASE_PARAMS,
    'big': model_params.BIG_PARAMS,
39
40
41
}


42
43
44
45
46
def is_v2():
  """Returns whether it is v2."""
  return tf2_internal.enabled()


47
48
49
def get_model_params(param_set, num_gpus):
  """Gets predefined model params."""
  if num_gpus > 1:
Toby Boyd's avatar
Toby Boyd committed
50
    if param_set == 'big':
51
      return model_params.BIG_MULTI_GPU_PARAMS.copy()
Toby Boyd's avatar
Toby Boyd committed
52
    elif param_set == 'base':
53
54
      return model_params.BASE_MULTI_GPU_PARAMS.copy()
    else:
Toby Boyd's avatar
Toby Boyd committed
55
      raise ValueError('Not valid params: param_set={} num_gpus={}'.format(
56
57
58
59
60
61
62
          param_set, num_gpus))

  return PARAMS_MAP[param_set].copy()


def define_transformer_flags():
  """Add flags and flag validators for running transformer_main."""
63
  # Add common flags (data_dir, model_dir, etc.).
64
  flags_core.define_base(num_gpu=True, distribution_strategy=True)
65
66
67
68
69
70
  flags_core.define_performance(
      num_parallel_calls=True,
      inter_op=False,
      intra_op=False,
      synthetic_data=True,
      max_train_steps=False,
71
72
      dtype=True,
      loss_scale=True,
Toby Boyd's avatar
Toby Boyd committed
73
      all_reduce_alg=True,
74
75
76
      num_packs=True,
      tf_gpu_thread_mode=True,
      datasets_num_private_threads=True,
77
      enable_xla=True,
Vinh Nguyen's avatar
Vinh Nguyen committed
78
79
      force_v2_in_keras_compile=True,
      fp16_implementation=True
80
  )
Toby Boyd's avatar
Toby Boyd committed
81
82
83
84
85
86
87
88
89
90
91

  # Additional performance flags
  # TODO(b/76028325): Remove when generic layout optimizer is ready.
  flags.DEFINE_boolean(
      name='enable_grappler_layout_optimizer',
      default=True,
      help='Enable Grappler layout optimizer. Currently Grappler can '
           'de-optimize fp16 graphs by forcing NCHW layout for all '
           'convolutions and batch normalizations, and this flag allows to '
           'disable it.'
  )
92

93
94
95
  flags_core.define_benchmark()
  flags_core.define_device(tpu=True)

Toby Boyd's avatar
Toby Boyd committed
96
  flags.DEFINE_integer(
Toby Boyd's avatar
Toby Boyd committed
97
      name='train_steps', short_name='ts', default=300000,
Toby Boyd's avatar
Toby Boyd committed
98
99
100
101
102
103
      help=flags_core.help_wrap('The number of steps used to train.'))
  flags.DEFINE_integer(
      name='steps_between_evals', short_name='sbe', default=1000,
      help=flags_core.help_wrap(
          'The Number of training steps to run between evaluations. This is '
          'used if --train_steps is defined.'))
104
105
106
  flags.DEFINE_boolean(
      name='enable_time_history', default=True,
      help='Whether to enable TimeHistory callback.')
Toby Boyd's avatar
Toby Boyd committed
107
108
109
  flags.DEFINE_boolean(
      name='enable_tensorboard', default=False,
      help='Whether to enable Tensorboard callback.')
110
111
112
  flags.DEFINE_boolean(
      name='enable_metrics_in_training', default=False,
      help='Whether to enable metrics during training.')
Toby Boyd's avatar
Toby Boyd committed
113
114
115
116
117
118
119
120
121
  flags.DEFINE_string(
      name='profile_steps', default=None,
      help='Save profiling data to model dir at given range of steps. The '
      'value must be a comma separated pair of positive integers, specifying '
      'the first and last step to profile. For example, "--profile_steps=2,4" '
      'triggers the profiler to process 3 steps, starting from the 2nd step. '
      'Note that profiler has a non-trivial performance overhead, and the '
      'output file can be gigantic if profiling many steps.')
  # Set flags from the flags_core module as 'key flags' so they're listed when
122
123
124
125
126
127
  # the '-h' flag is used. Without this line, the flags defined above are
  # only shown in the full `--helpful` help text.
  flags.adopt_module_key_flags(flags_core)

  # Add transformer-specific flags
  flags.DEFINE_enum(
Toby Boyd's avatar
Toby Boyd committed
128
      name='param_set', short_name='mp', default='big',
129
130
      enum_values=PARAMS_MAP.keys(),
      help=flags_core.help_wrap(
Toby Boyd's avatar
Toby Boyd committed
131
132
133
134
135
136
          'Parameter set to use when creating and training the model. The '
          'parameters define the input shape (batch size and max length), '
          'model configuration (size of embedding, # of hidden layers, etc.), '
          'and various other settings. The big parameter set increases the '
          'default batch size, embedding/hidden size, and filter size. For a '
          'complete list of parameters, please see model/model_params.py.'))
137
138

  flags.DEFINE_bool(
139
      name='static_batch', short_name='sb', default=False,
140
      help=flags_core.help_wrap(
Toby Boyd's avatar
Toby Boyd committed
141
142
143
144
145
146
          'Whether the batches in the dataset should have static shapes. In '
          'general, this setting should be False. Dynamic shapes allow the '
          'inputs to be grouped so that the number of padding tokens is '
          'minimized, and helps model training. In cases where the input shape '
          'must be static (e.g. running on TPU), this setting will be ignored '
          'and static batching will always be used.'))
147
148
149
150
151
152
  flags.DEFINE_integer(
      name='max_length', short_name='ml', default=256,
      help=flags_core.help_wrap(
          'Max sentence length for Transformer. Default is 256. Note: Usually '
          'it is more effective to use a smaller max length if static_batch is '
          'enabled, e.g. 64.'))
153
154
155

  # Flags for training with steps (may be used for debugging)
  flags.DEFINE_integer(
Toby Boyd's avatar
Toby Boyd committed
156
157
      name='validation_steps', short_name='vs', default=64,
      help=flags_core.help_wrap('The number of steps used in validation.'))
158
159
160

  # BLEU score computation
  flags.DEFINE_string(
Toby Boyd's avatar
Toby Boyd committed
161
      name='bleu_source', short_name='bls', default=None,
162
      help=flags_core.help_wrap(
Toby Boyd's avatar
Toby Boyd committed
163
164
          'Path to source file containing text translate when calculating the '
          'official BLEU score. Both --bleu_source and --bleu_ref must be set. '
165
          ))
166
  flags.DEFINE_string(
Toby Boyd's avatar
Toby Boyd committed
167
      name='bleu_ref', short_name='blr', default=None,
168
      help=flags_core.help_wrap(
Toby Boyd's avatar
Toby Boyd committed
169
170
          'Path to source file containing text translate when calculating the '
          'official BLEU score. Both --bleu_source and --bleu_ref must be set. '
171
          ))
172
  flags.DEFINE_string(
Toby Boyd's avatar
Toby Boyd committed
173
      name='vocab_file', short_name='vf', default=None,
174
      help=flags_core.help_wrap(
Toby Boyd's avatar
Toby Boyd committed
175
176
177
          'Path to subtoken vocabulary file. If data_download.py was used to '
          'download and encode the training data, look in the data_dir to find '
          'the vocab file.'))
178
  flags.DEFINE_string(
Toby Boyd's avatar
Toby Boyd committed
179
180
      name='mode', default='train',
      help=flags_core.help_wrap('mode: train, eval, or predict'))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
181
182
183
184
185
  flags.DEFINE_bool(
      name='use_ctl',
      default=False,
      help=flags_core.help_wrap(
          'Whether the model runs with custom training loop.'))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
  flags.DEFINE_integer(
      name='decode_batch_size',
      default=32,
      help=flags_core.help_wrap(
          'Global batch size used for Transformer autoregressive decoding on '
          'TPU.'))
  flags.DEFINE_integer(
      name='decode_max_length',
      default=97,
      help=flags_core.help_wrap(
          'Max sequence length of the decode/eval data. This is used by '
          'Transformer autoregressive decoding on TPU to have minimum '
          'paddings.'))
  flags.DEFINE_bool(
      name='padded_decode',
      default=False,
      help=flags_core.help_wrap(
          'Whether the autoregressive decoding runs with input data padded to '
          'the decode_max_length. For TPU/XLA-GPU runs, this flag has to be '
          'set due the static shape requirement. Although CPU/GPU could also '
          'use padded_decode, it has not been tested. In addition, this method '
          'will introduce unnecessary overheads which grow quadratically with '
          'the max sequence length.'))
209

Toby Boyd's avatar
Toby Boyd committed
210
211
  flags_core.set_defaults(data_dir='/tmp/translate_ende',
                          model_dir='/tmp/transformer_model',
212
                          batch_size=None)
213
214
215

  # pylint: disable=unused-variable
  @flags.multi_flags_validator(
Toby Boyd's avatar
Toby Boyd committed
216
217
      ['bleu_source', 'bleu_ref'],
      message='Both or neither --bleu_source and --bleu_ref must be defined.')
218
  def _check_bleu_files(flags_dict):
Toby Boyd's avatar
Toby Boyd committed
219
220
    return (flags_dict['bleu_source'] is None) == (
        flags_dict['bleu_ref'] is None)
221
222

  @flags.multi_flags_validator(
Toby Boyd's avatar
Toby Boyd committed
223
224
225
      ['bleu_source', 'bleu_ref', 'vocab_file'],
      message='--vocab_file must be defined if --bleu_source and --bleu_ref '
              'are defined.')
226
  def _check_bleu_vocab_file(flags_dict):
Toby Boyd's avatar
Toby Boyd committed
227
228
    if flags_dict['bleu_source'] and flags_dict['bleu_ref']:
      return flags_dict['vocab_file'] is not None
229
230
231
    return True
  # pylint: enable=unused-variable

Toby Boyd's avatar
Toby Boyd committed
232

Zongwei Zhou's avatar
Zongwei Zhou committed
233
def get_callbacks(steps_per_epoch):
Toby Boyd's avatar
Toby Boyd committed
234
235
  """Returns common callbacks."""
  callbacks = []
236
237
238
  if FLAGS.enable_time_history:
    time_callback = keras_utils.TimeHistory(FLAGS.batch_size, FLAGS.log_steps)
    callbacks.append(time_callback)
Toby Boyd's avatar
Toby Boyd committed
239
240
241
242
243
244
245
246
247
248

  if FLAGS.enable_tensorboard:
    tensorboard_callback = tf.keras.callbacks.TensorBoard(
        log_dir=FLAGS.model_dir)
    callbacks.append(tensorboard_callback)

  if FLAGS.profile_steps:
    profiler_callback = keras_utils.get_profiler_callback(
        FLAGS.model_dir,
        FLAGS.profile_steps,
Zongwei Zhou's avatar
Zongwei Zhou committed
249
250
        FLAGS.enable_tensorboard,
        steps_per_epoch)
Toby Boyd's avatar
Toby Boyd committed
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
    callbacks.append(profiler_callback)

  return callbacks


def build_stats(history, callbacks):
  """Normalizes and returns dictionary of stats.

  Args:
    history: Results of the training step.
    callbacks: a list of callbacks which might include a time history callback
      used during keras.fit.

  Returns:
    Dictionary of normalized results.
  """
  stats = {}

  if history and history.history:
    train_hist = history.history
    # Gets final loss from training.
    stats['loss'] = train_hist['loss'][-1].item()

  if not callbacks:
    return stats

  # Look for the time history callback which was used during keras.fit
  for callback in callbacks:
    if isinstance(callback, keras_utils.TimeHistory):
      timestamp_log = callback.timestamp_log
      stats['step_timestamp_log'] = timestamp_log
      stats['train_finish_time'] = callback.train_finish_time
      if len(timestamp_log) > 1:
        stats['avg_exp_per_second'] = (
            callback.batch_size * callback.log_steps *
            (len(callback.timestamp_log)-1) /
            (timestamp_log[-1].timestamp - timestamp_log[0].timestamp))
  return stats