train_utils.py 11.9 KB
Newer Older
yukun's avatar
yukun committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Utility functions for training."""

17
18
import six

yukun's avatar
yukun committed
19
import tensorflow as tf
20
from deeplab.core import preprocess_utils
yukun's avatar
yukun committed
21

22
23
24
25
26

def _div_maybe_zero(total_loss, num_present):
  """Normalizes the total loss with the number of present pixels."""
  return tf.to_float(num_present > 0) * tf.div(total_loss,
                                               tf.maximum(1e-5, num_present))
yukun's avatar
yukun committed
27
28
29
30
31
32
33
34


def add_softmax_cross_entropy_loss_for_each_scale(scales_to_logits,
                                                  labels,
                                                  num_classes,
                                                  ignore_label,
                                                  loss_weight=1.0,
                                                  upsample_logits=True,
35
36
                                                  hard_example_mining_step=0,
                                                  top_k_percent_pixels=1.0,
yukun's avatar
yukun committed
37
38
39
40
41
42
43
44
45
46
47
                                                  scope=None):
  """Adds softmax cross entropy loss for logits of each scale.

  Args:
    scales_to_logits: A map from logits names for different scales to logits.
      The logits have shape [batch, logits_height, logits_width, num_classes].
    labels: Groundtruth labels with shape [batch, image_height, image_width, 1].
    num_classes: Integer, number of target classes.
    ignore_label: Integer, label to ignore.
    loss_weight: Float, loss weight.
    upsample_logits: Boolean, upsample logits or not.
48
49
50
51
52
53
54
55
56
    hard_example_mining_step: An integer, the training step in which the hard
      exampling mining kicks off. Note that we gradually reduce the mining
      percent to the top_k_percent_pixels. For example, if
      hard_example_mining_step = 100K and top_k_percent_pixels = 0.25, then
      mining percent will gradually reduce from 100% to 25% until 100K steps
      after which we only mine top 25% pixels.
    top_k_percent_pixels: A float, the value lies in [0.0, 1.0]. When its value
      < 1.0, only compute the loss for the top k percent pixels (e.g., the top
      20% pixels). This is useful for hard pixel mining.
yukun's avatar
yukun committed
57
58
59
60
61
62
63
64
    scope: String, the scope for the loss.

  Raises:
    ValueError: Label or logits is None.
  """
  if labels is None:
    raise ValueError('No label for softmax cross entropy loss.')

65
  for scale, logits in six.iteritems(scales_to_logits):
yukun's avatar
yukun committed
66
67
68
69
70
71
72
    loss_scope = None
    if scope:
      loss_scope = '%s_%s' % (scope, scale)

    if upsample_logits:
      # Label is not downsampled, and instead we upsample logits.
      logits = tf.image.resize_bilinear(
73
74
75
          logits,
          preprocess_utils.resolve_shape(labels, 4)[1:3],
          align_corners=True)
yukun's avatar
yukun committed
76
77
78
79
      scaled_labels = labels
    else:
      # Label is downsampled to the same size as logits.
      scaled_labels = tf.image.resize_nearest_neighbor(
80
81
82
          labels,
          preprocess_utils.resolve_shape(logits, 4)[1:3],
          align_corners=True)
yukun's avatar
yukun committed
83
84
85
86

    scaled_labels = tf.reshape(scaled_labels, shape=[-1])
    not_ignore_mask = tf.to_float(tf.not_equal(scaled_labels,
                                               ignore_label)) * loss_weight
87
    one_hot_labels = tf.one_hot(
yukun's avatar
yukun committed
88
        scaled_labels, num_classes, on_value=1.0, off_value=0.0)
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

    if top_k_percent_pixels == 1.0:
      # Compute the loss for all pixels.
      tf.losses.softmax_cross_entropy(
          one_hot_labels,
          tf.reshape(logits, shape=[-1, num_classes]),
          weights=not_ignore_mask,
          scope=loss_scope)
    else:
      logits = tf.reshape(logits, shape=[-1, num_classes])
      weights = not_ignore_mask
      with tf.name_scope(loss_scope, 'softmax_hard_example_mining',
                         [logits, one_hot_labels, weights]):
        one_hot_labels = tf.stop_gradient(
            one_hot_labels, name='labels_stop_gradient')
        pixel_losses = tf.nn.softmax_cross_entropy_with_logits_v2(
            labels=one_hot_labels,
            logits=logits,
            name='pixel_losses')
        weighted_pixel_losses = tf.multiply(pixel_losses, weights)
        num_pixels = tf.to_float(tf.shape(logits)[0])
        # Compute the top_k_percent pixels based on current training step.
        if hard_example_mining_step == 0:
          # Directly focus on the top_k pixels.
          top_k_pixels = tf.to_int32(top_k_percent_pixels * num_pixels)
        else:
          # Gradually reduce the mining percent to top_k_percent_pixels.
          global_step = tf.to_float(tf.train.get_or_create_global_step())
          ratio = tf.minimum(1.0, global_step / hard_example_mining_step)
          top_k_pixels = tf.to_int32(
              (ratio * top_k_percent_pixels + (1.0 - ratio)) * num_pixels)
        top_k_losses, _ = tf.nn.top_k(weighted_pixel_losses,
                                      k=top_k_pixels,
                                      sorted=True,
                                      name='top_k_percent_pixels')
        total_loss = tf.reduce_sum(top_k_losses)
        num_present = tf.reduce_sum(
            tf.to_float(tf.not_equal(top_k_losses, 0.0)))
        loss = _div_maybe_zero(total_loss, num_present)
        tf.losses.add_loss(loss)
yukun's avatar
yukun committed
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162


def get_model_init_fn(train_logdir,
                      tf_initial_checkpoint,
                      initialize_last_layer,
                      last_layers,
                      ignore_missing_vars=False):
  """Gets the function initializing model variables from a checkpoint.

  Args:
    train_logdir: Log directory for training.
    tf_initial_checkpoint: TensorFlow checkpoint for initialization.
    initialize_last_layer: Initialize last layer or not.
    last_layers: Last layers of the model.
    ignore_missing_vars: Ignore missing variables in the checkpoint.

  Returns:
    Initialization function.
  """
  if tf_initial_checkpoint is None:
    tf.logging.info('Not initializing the model from a checkpoint.')
    return None

  if tf.train.latest_checkpoint(train_logdir):
    tf.logging.info('Ignoring initialization; other checkpoint exists')
    return None

  tf.logging.info('Initializing model from path: %s', tf_initial_checkpoint)

  # Variables that will not be restored.
  exclude_list = ['global_step']
  if not initialize_last_layer:
    exclude_list.extend(last_layers)

163
164
  variables_to_restore = tf.contrib.framework.get_variables_to_restore(
      exclude=exclude_list)
yukun's avatar
yukun committed
165

166
  if variables_to_restore:
167
    init_op, init_feed_dict = tf.contrib.framework.assign_from_checkpoint(
168
169
170
        tf_initial_checkpoint,
        variables_to_restore,
        ignore_missing_vars=ignore_missing_vars)
171
172
173
174
175
176
177
178
    global_step = tf.train.get_or_create_global_step()

    def restore_fn(unused_scaffold, sess):
      sess.run(init_op, init_feed_dict)
      sess.run([global_step])

    return restore_fn

179
  return None
yukun's avatar
yukun committed
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199


def get_model_gradient_multipliers(last_layers, last_layer_gradient_multiplier):
  """Gets the gradient multipliers.

  The gradient multipliers will adjust the learning rates for model
  variables. For the task of semantic segmentation, the models are
  usually fine-tuned from the models trained on the task of image
  classification. To fine-tune the models, we usually set larger (e.g.,
  10 times larger) learning rate for the parameters of last layer.

  Args:
    last_layers: Scopes of last layers.
    last_layer_gradient_multiplier: The gradient multiplier for last layers.

  Returns:
    The gradient multiplier map with variables as key, and multipliers as value.
  """
  gradient_multipliers = {}

200
  for var in tf.model_variables():
yukun's avatar
yukun committed
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
    # Double the learning rate for biases.
    if 'biases' in var.op.name:
      gradient_multipliers[var.op.name] = 2.

    # Use larger learning rate for last layer variables.
    for layer in last_layers:
      if layer in var.op.name and 'biases' in var.op.name:
        gradient_multipliers[var.op.name] = 2 * last_layer_gradient_multiplier
        break
      elif layer in var.op.name:
        gradient_multipliers[var.op.name] = last_layer_gradient_multiplier
        break

  return gradient_multipliers


217
218
219
220
221
222
223
224
225
def get_model_learning_rate(learning_policy,
                            base_learning_rate,
                            learning_rate_decay_step,
                            learning_rate_decay_factor,
                            training_number_of_steps,
                            learning_power,
                            slow_start_step,
                            slow_start_learning_rate,
                            slow_start_burnin_type='none'):
yukun's avatar
yukun committed
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
  """Gets model's learning rate.

  Computes the model's learning rate for different learning policy.
  Right now, only "step" and "poly" are supported.
  (1) The learning policy for "step" is computed as follows:
    current_learning_rate = base_learning_rate *
      learning_rate_decay_factor ^ (global_step / learning_rate_decay_step)
  See tf.train.exponential_decay for details.
  (2) The learning policy for "poly" is computed as follows:
    current_learning_rate = base_learning_rate *
      (1 - global_step / training_number_of_steps) ^ learning_power

  Args:
    learning_policy: Learning rate policy for training.
    base_learning_rate: The base learning rate for model training.
    learning_rate_decay_step: Decay the base learning rate at a fixed step.
    learning_rate_decay_factor: The rate to decay the base learning rate.
    training_number_of_steps: Number of steps for training.
    learning_power: Power used for 'poly' learning policy.
    slow_start_step: Training model with small learning rate for the first
      few steps.
    slow_start_learning_rate: The learning rate employed during slow start.
248
249
250
251
    slow_start_burnin_type: The burnin type for the slow start stage. Can be
      `none` which means no burnin or `linear` which means the learning rate
      increases linearly from slow_start_learning_rate and reaches
      base_learning_rate after slow_start_steps.
yukun's avatar
yukun committed
252
253
254
255
256

  Returns:
    Learning rate for the specified learning policy.

  Raises:
257
    ValueError: If learning policy or slow start burnin type is not recognized.
yukun's avatar
yukun committed
258
259
  """
  global_step = tf.train.get_or_create_global_step()
260
261
262
263
264
  adjusted_global_step = global_step

  if slow_start_burnin_type != 'none':
    adjusted_global_step -= slow_start_step

yukun's avatar
yukun committed
265
266
267
  if learning_policy == 'step':
    learning_rate = tf.train.exponential_decay(
        base_learning_rate,
268
        adjusted_global_step,
yukun's avatar
yukun committed
269
270
271
272
273
274
        learning_rate_decay_step,
        learning_rate_decay_factor,
        staircase=True)
  elif learning_policy == 'poly':
    learning_rate = tf.train.polynomial_decay(
        base_learning_rate,
275
        adjusted_global_step,
yukun's avatar
yukun committed
276
277
278
279
280
281
        training_number_of_steps,
        end_learning_rate=0,
        power=learning_power)
  else:
    raise ValueError('Unknown learning policy.')

282
283
284
285
286
287
288
289
290
291
292
  adjusted_slow_start_learning_rate = slow_start_learning_rate
  if slow_start_burnin_type == 'linear':
    # Do linear burnin. Increase linearly from slow_start_learning_rate and
    # reach base_learning_rate after (global_step >= slow_start_steps).
    adjusted_slow_start_learning_rate = (
        slow_start_learning_rate +
        (base_learning_rate - slow_start_learning_rate) *
        tf.to_float(global_step) / slow_start_step)
  elif slow_start_burnin_type != 'none':
    raise ValueError('Unknown burnin type.')

yukun's avatar
yukun committed
293
  # Employ small learning rate at the first few steps for warm start.
294
295
  return tf.where(global_step < slow_start_step,
                  adjusted_slow_start_learning_rate, learning_rate)