model.py 30.1 KB
Newer Older
yukun's avatar
yukun committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
r"""Provides DeepLab model definition and helper functions.

DeepLab is a deep learning system for semantic image segmentation with
the following features:

(1) Atrous convolution to explicitly control the resolution at which
feature responses are computed within Deep Convolutional Neural Networks.

(2) Atrous spatial pyramid pooling (ASPP) to robustly segment objects at
multiple scales with filters at multiple sampling rates and effective
fields-of-views.

(3) ASPP module augmented with image-level feature and batch normalization.

(4) A simple yet effective decoder module to recover the object boundaries.

See the following papers for more details:

"Encoder-Decoder with Atrous Separable Convolution for Semantic Image
Segmentation"
Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, Hartwig Adam.
hsm207's avatar
hsm207 committed
36
(https://arxiv.org/abs/1802.02611)
yukun's avatar
yukun committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

"Rethinking Atrous Convolution for Semantic Image Segmentation,"
Liang-Chieh Chen, George Papandreou, Florian Schroff, Hartwig Adam
(https://arxiv.org/abs/1706.05587)

"DeepLab: Semantic Image Segmentation with Deep Convolutional Nets,
Atrous Convolution, and Fully Connected CRFs",
Liang-Chieh Chen*, George Papandreou*, Iasonas Kokkinos, Kevin Murphy,
Alan L Yuille (* equal contribution)
(https://arxiv.org/abs/1606.00915)

"Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected
CRFs"
Liang-Chieh Chen*, George Papandreou*, Iasonas Kokkinos, Kevin Murphy,
Alan L. Yuille (* equal contribution)
(https://arxiv.org/abs/1412.7062)
"""
import tensorflow as tf
55
from deeplab.core import dense_prediction_cell
yukun's avatar
yukun committed
56
from deeplab.core import feature_extractor
57
58
from deeplab.core import utils

yukun's avatar
yukun committed
59
60
slim = tf.contrib.slim

61
62
63
64
65
66
LOGITS_SCOPE_NAME = 'logits'
MERGED_LOGITS_SCOPE = 'merged_logits'
IMAGE_POOLING_SCOPE = 'image_pooling'
ASPP_SCOPE = 'aspp'
CONCAT_PROJECTION_SCOPE = 'concat_projection'
DECODER_SCOPE = 'decoder'
67
META_ARCHITECTURE_SCOPE = 'meta_architecture'
68

69
_resize_bilinear = utils.resize_bilinear
70
71
scale_dimension = utils.scale_dimension
split_separable_conv2d = utils.split_separable_conv2d
72

73

74
def get_extra_layer_scopes(last_layers_contain_logits_only=False):
yukun's avatar
yukun committed
75
76
  """Gets the scopes for extra layers.

77
78
79
80
  Args:
    last_layers_contain_logits_only: Boolean, True if only consider logits as
    the last layer (i.e., exclude ASPP module, decoder module and so on)

yukun's avatar
yukun committed
81
82
83
  Returns:
    A list of scopes for extra layers.
  """
84
  if last_layers_contain_logits_only:
85
    return [LOGITS_SCOPE_NAME]
86
87
  else:
    return [
88
89
90
91
92
        LOGITS_SCOPE_NAME,
        IMAGE_POOLING_SCOPE,
        ASPP_SCOPE,
        CONCAT_PROJECTION_SCOPE,
        DECODER_SCOPE,
93
        META_ARCHITECTURE_SCOPE,
94
    ]
yukun's avatar
yukun committed
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138


def predict_labels_multi_scale(images,
                               model_options,
                               eval_scales=(1.0,),
                               add_flipped_images=False):
  """Predicts segmentation labels.

  Args:
    images: A tensor of size [batch, height, width, channels].
    model_options: A ModelOptions instance to configure models.
    eval_scales: The scales to resize images for evaluation.
    add_flipped_images: Add flipped images for evaluation or not.

  Returns:
    A dictionary with keys specifying the output_type (e.g., semantic
      prediction) and values storing Tensors representing predictions (argmax
      over channels). Each prediction has size [batch, height, width].
  """
  outputs_to_predictions = {
      output: []
      for output in model_options.outputs_to_num_classes
  }

  for i, image_scale in enumerate(eval_scales):
    with tf.variable_scope(tf.get_variable_scope(), reuse=True if i else None):
      outputs_to_scales_to_logits = multi_scale_logits(
          images,
          model_options=model_options,
          image_pyramid=[image_scale],
          is_training=False,
          fine_tune_batch_norm=False)

    if add_flipped_images:
      with tf.variable_scope(tf.get_variable_scope(), reuse=True):
        outputs_to_scales_to_logits_reversed = multi_scale_logits(
            tf.reverse_v2(images, [2]),
            model_options=model_options,
            image_pyramid=[image_scale],
            is_training=False,
            fine_tune_batch_norm=False)

    for output in sorted(outputs_to_scales_to_logits):
      scales_to_logits = outputs_to_scales_to_logits[output]
139
      logits = _resize_bilinear(
140
          scales_to_logits[MERGED_LOGITS_SCOPE],
yukun's avatar
yukun committed
141
          tf.shape(images)[1:3],
142
          scales_to_logits[MERGED_LOGITS_SCOPE].dtype)
yukun's avatar
yukun committed
143
144
145
146
147
148
      outputs_to_predictions[output].append(
          tf.expand_dims(tf.nn.softmax(logits), 4))

      if add_flipped_images:
        scales_to_logits_reversed = (
            outputs_to_scales_to_logits_reversed[output])
149
        logits_reversed = _resize_bilinear(
150
            tf.reverse_v2(scales_to_logits_reversed[MERGED_LOGITS_SCOPE], [2]),
yukun's avatar
yukun committed
151
            tf.shape(images)[1:3],
152
            scales_to_logits_reversed[MERGED_LOGITS_SCOPE].dtype)
yukun's avatar
yukun committed
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
        outputs_to_predictions[output].append(
            tf.expand_dims(tf.nn.softmax(logits_reversed), 4))

  for output in sorted(outputs_to_predictions):
    predictions = outputs_to_predictions[output]
    # Compute average prediction across different scales and flipped images.
    predictions = tf.reduce_mean(tf.concat(predictions, 4), axis=4)
    outputs_to_predictions[output] = tf.argmax(predictions, 3)

  return outputs_to_predictions


def predict_labels(images, model_options, image_pyramid=None):
  """Predicts segmentation labels.

  Args:
    images: A tensor of size [batch, height, width, channels].
    model_options: A ModelOptions instance to configure models.
    image_pyramid: Input image scales for multi-scale feature extraction.

  Returns:
    A dictionary with keys specifying the output_type (e.g., semantic
      prediction) and values storing Tensors representing predictions (argmax
      over channels). Each prediction has size [batch, height, width].
  """
  outputs_to_scales_to_logits = multi_scale_logits(
      images,
      model_options=model_options,
      image_pyramid=image_pyramid,
      is_training=False,
      fine_tune_batch_norm=False)

  predictions = {}
  for output in sorted(outputs_to_scales_to_logits):
    scales_to_logits = outputs_to_scales_to_logits[output]
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
    logits = scales_to_logits[MERGED_LOGITS_SCOPE]
    # There are two ways to obtain the final prediction results: (1) bilinear
    # upsampling the logits followed by argmax, or (2) argmax followed by
    # nearest neighbor upsampling. The second option may introduce the "blocking
    # effect" but is computationally efficient.
    if model_options.prediction_with_upsampled_logits:
      logits = _resize_bilinear(logits,
                                tf.shape(images)[1:3],
                                scales_to_logits[MERGED_LOGITS_SCOPE].dtype)
      predictions[output] = tf.argmax(logits, 3)
    else:
      argmax_results = tf.argmax(logits, 3)
      argmax_results = tf.image.resize_nearest_neighbor(
          tf.expand_dims(argmax_results, 3),
          tf.shape(images)[1:3],
          align_corners=True,
          name='resize_prediction')
      predictions[output] = tf.squeeze(argmax_results, 3)
yukun's avatar
yukun committed
206
207
208
209
210
211
212
213
214

  return predictions


def multi_scale_logits(images,
                       model_options,
                       image_pyramid,
                       weight_decay=0.0001,
                       is_training=False,
215
216
                       fine_tune_batch_norm=False,
                       nas_training_hyper_parameters=None):
yukun's avatar
yukun committed
217
218
219
220
221
222
223
224
225
226
227
228
  """Gets the logits for multi-scale inputs.

  The returned logits are all downsampled (due to max-pooling layers)
  for both training and evaluation.

  Args:
    images: A tensor of size [batch, height, width, channels].
    model_options: A ModelOptions instance to configure models.
    image_pyramid: Input image scales for multi-scale feature extraction.
    weight_decay: The weight decay for model variables.
    is_training: Is training or not.
    fine_tune_batch_norm: Fine-tune the batch norm parameters or not.
229
230
231
232
233
234
    nas_training_hyper_parameters: A dictionary storing hyper-parameters for
      training nas models. Its keys are:
      - `drop_path_keep_prob`: Probability to keep each path in the cell when
        training.
      - `total_training_steps`: Total training steps to help drop path
        probability calculation.
yukun's avatar
yukun committed
235
236
237
238
239
240
241
242
243
244
245
246

  Returns:
    outputs_to_scales_to_logits: A map of maps from output_type (e.g.,
      semantic prediction) to a dictionary of multi-scale logits names to
      logits. For each output_type, the dictionary has keys which
      correspond to the scales and values which correspond to the logits.
      For example, if `scales` equals [1.0, 1.5], then the keys would
      include 'merged_logits', 'logits_1.00' and 'logits_1.50'.

  Raises:
    ValueError: If model_options doesn't specify crop_size and its
      add_image_level_feature = True, since add_image_level_feature requires
247
      crop_size information.
yukun's avatar
yukun committed
248
249
250
251
252
253
254
255
256
257
  """
  # Setup default values.
  if not image_pyramid:
    image_pyramid = [1.0]
  crop_height = (
      model_options.crop_size[0]
      if model_options.crop_size else tf.shape(images)[1])
  crop_width = (
      model_options.crop_size[1]
      if model_options.crop_size else tf.shape(images)[2])
258
259
260
  if model_options.image_pooling_crop_size:
    image_pooling_crop_height = model_options.image_pooling_crop_size[0]
    image_pooling_crop_width = model_options.image_pooling_crop_size[1]
yukun's avatar
yukun committed
261
262

  # Compute the height, width for the output logits.
263
264
265
266
  if model_options.decoder_output_stride:
    logits_output_stride = min(model_options.decoder_output_stride)
  else:
    logits_output_stride = model_options.output_stride
yukun's avatar
yukun committed
267
268
269
270
271
272
273
274
275
276
277
278
279
280

  logits_height = scale_dimension(
      crop_height,
      max(1.0, max(image_pyramid)) / logits_output_stride)
  logits_width = scale_dimension(
      crop_width,
      max(1.0, max(image_pyramid)) / logits_output_stride)

  # Compute the logits for each scale in the image pyramid.
  outputs_to_scales_to_logits = {
      k: {}
      for k in model_options.outputs_to_num_classes
  }

281
282
  num_channels = images.get_shape().as_list()[-1]

283
  for image_scale in image_pyramid:
yukun's avatar
yukun committed
284
285
286
287
    if image_scale != 1.0:
      scaled_height = scale_dimension(crop_height, image_scale)
      scaled_width = scale_dimension(crop_width, image_scale)
      scaled_crop_size = [scaled_height, scaled_width]
288
      scaled_images = _resize_bilinear(images, scaled_crop_size, images.dtype)
yukun's avatar
yukun committed
289
      if model_options.crop_size:
290
291
292
293
294
295
296
297
        scaled_images.set_shape(
            [None, scaled_height, scaled_width, num_channels])
      # Adjust image_pooling_crop_size accordingly.
      scaled_image_pooling_crop_size = None
      if model_options.image_pooling_crop_size:
        scaled_image_pooling_crop_size = [
            scale_dimension(image_pooling_crop_height, image_scale),
            scale_dimension(image_pooling_crop_width, image_scale)]
yukun's avatar
yukun committed
298
299
300
    else:
      scaled_crop_size = model_options.crop_size
      scaled_images = images
301
      scaled_image_pooling_crop_size = model_options.image_pooling_crop_size
yukun's avatar
yukun committed
302

303
304
305
    updated_options = model_options._replace(
        crop_size=scaled_crop_size,
        image_pooling_crop_size=scaled_image_pooling_crop_size)
yukun's avatar
yukun committed
306
307
308
309
    outputs_to_logits = _get_logits(
        scaled_images,
        updated_options,
        weight_decay=weight_decay,
310
        reuse=tf.AUTO_REUSE,
yukun's avatar
yukun committed
311
        is_training=is_training,
312
313
        fine_tune_batch_norm=fine_tune_batch_norm,
        nas_training_hyper_parameters=nas_training_hyper_parameters)
yukun's avatar
yukun committed
314
315
316

    # Resize the logits to have the same dimension before merging.
    for output in sorted(outputs_to_logits):
317
      outputs_to_logits[output] = _resize_bilinear(
yukun's avatar
yukun committed
318
          outputs_to_logits[output], [logits_height, logits_width],
319
          outputs_to_logits[output].dtype)
yukun's avatar
yukun committed
320
321
322
323
324

    # Return when only one input scale.
    if len(image_pyramid) == 1:
      for output in sorted(model_options.outputs_to_num_classes):
        outputs_to_scales_to_logits[output][
325
            MERGED_LOGITS_SCOPE] = outputs_to_logits[output]
yukun's avatar
yukun committed
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
      return outputs_to_scales_to_logits

    # Save logits to the output map.
    for output in sorted(model_options.outputs_to_num_classes):
      outputs_to_scales_to_logits[output][
          'logits_%.2f' % image_scale] = outputs_to_logits[output]

  # Merge the logits from all the multi-scale inputs.
  for output in sorted(model_options.outputs_to_num_classes):
    # Concatenate the multi-scale logits for each output type.
    all_logits = [
        tf.expand_dims(logits, axis=4)
        for logits in outputs_to_scales_to_logits[output].values()
    ]
    all_logits = tf.concat(all_logits, 4)
    merge_fn = (
        tf.reduce_max
        if model_options.merge_method == 'max' else tf.reduce_mean)
344
    outputs_to_scales_to_logits[output][MERGED_LOGITS_SCOPE] = merge_fn(
yukun's avatar
yukun committed
345
346
347
348
349
        all_logits, axis=4)

  return outputs_to_scales_to_logits


350
351
352
353
354
def extract_features(images,
                     model_options,
                     weight_decay=0.0001,
                     reuse=None,
                     is_training=False,
355
356
                     fine_tune_batch_norm=False,
                     nas_training_hyper_parameters=None):
yukun's avatar
yukun committed
357
358
359
360
361
362
363
364
365
  """Extracts features by the particular model_variant.

  Args:
    images: A tensor of size [batch, height, width, channels].
    model_options: A ModelOptions instance to configure models.
    weight_decay: The weight decay for model variables.
    reuse: Reuse the model variables or not.
    is_training: Is training or not.
    fine_tune_batch_norm: Fine-tune the batch norm parameters or not.
366
367
368
369
370
371
    nas_training_hyper_parameters: A dictionary storing hyper-parameters for
      training nas models. Its keys are:
      - `drop_path_keep_prob`: Probability to keep each path in the cell when
        training.
      - `total_training_steps`: Total training steps to help drop path
        probability calculation.
yukun's avatar
yukun committed
372
373
374
375
376
377
378
379
380
381
382
383
384

  Returns:
    concat_logits: A tensor of size [batch, feature_height, feature_width,
      feature_channels], where feature_height/feature_width are determined by
      the images height/width and output_stride.
    end_points: A dictionary from components of the network to the corresponding
      activation.
  """
  features, end_points = feature_extractor.extract_features(
      images,
      output_stride=model_options.output_stride,
      multi_grid=model_options.multi_grid,
      model_variant=model_options.model_variant,
385
      depth_multiplier=model_options.depth_multiplier,
386
      divisible_by=model_options.divisible_by,
yukun's avatar
yukun committed
387
388
389
      weight_decay=weight_decay,
      reuse=reuse,
      is_training=is_training,
390
391
392
393
394
395
      preprocessed_images_dtype=model_options.preprocessed_images_dtype,
      fine_tune_batch_norm=fine_tune_batch_norm,
      nas_stem_output_num_conv_filters=(
          model_options.nas_stem_output_num_conv_filters),
      nas_training_hyper_parameters=nas_training_hyper_parameters,
      use_bounded_activation=model_options.use_bounded_activation)
yukun's avatar
yukun committed
396
397
398
399

  if not model_options.aspp_with_batch_norm:
    return features, end_points
  else:
400
401
402
403
404
    if model_options.dense_prediction_cell_config is not None:
      tf.logging.info('Using dense prediction cell config.')
      dense_prediction_layer = dense_prediction_cell.DensePredictionCell(
          config=model_options.dense_prediction_cell_config,
          hparams={
405
              'conv_rate_multiplier': 16 // model_options.output_stride,
406
407
408
409
410
411
412
413
414
415
416
417
          })
      concat_logits = dense_prediction_layer.build_cell(
          features,
          output_stride=model_options.output_stride,
          crop_size=model_options.crop_size,
          image_pooling_crop_size=model_options.image_pooling_crop_size,
          weight_decay=weight_decay,
          reuse=reuse,
          is_training=is_training,
          fine_tune_batch_norm=fine_tune_batch_norm)
      return concat_logits, end_points
    else:
418
      # The following codes employ the DeepLabv3 ASPP module. Note that we
419
      # could express the ASPP module as one particular dense prediction
420
421
      # cell architecture. We do not do so but leave the following codes
      # for backward compatibility.
422
      batch_norm_params = {
423
424
425
426
          'is_training': is_training and fine_tune_batch_norm,
          'decay': 0.9997,
          'epsilon': 1e-5,
          'scale': True,
427
428
      }

429
430
431
      activation_fn = (
          tf.nn.relu6 if model_options.use_bounded_activation else tf.nn.relu)

432
433
434
      with slim.arg_scope(
          [slim.conv2d, slim.separable_conv2d],
          weights_regularizer=slim.l2_regularizer(weight_decay),
435
          activation_fn=activation_fn,
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
          normalizer_fn=slim.batch_norm,
          padding='SAME',
          stride=1,
          reuse=reuse):
        with slim.arg_scope([slim.batch_norm], **batch_norm_params):
          depth = 256
          branch_logits = []

          if model_options.add_image_level_feature:
            if model_options.crop_size is not None:
              image_pooling_crop_size = model_options.image_pooling_crop_size
              # If image_pooling_crop_size is not specified, use crop_size.
              if image_pooling_crop_size is None:
                image_pooling_crop_size = model_options.crop_size
              pool_height = scale_dimension(
                  image_pooling_crop_size[0],
                  1. / model_options.output_stride)
              pool_width = scale_dimension(
                  image_pooling_crop_size[1],
                  1. / model_options.output_stride)
              image_feature = slim.avg_pool2d(
457
458
                  features, [pool_height, pool_width],
                  model_options.image_pooling_stride, padding='VALID')
459
460
461
462
463
464
              resize_height = scale_dimension(
                  model_options.crop_size[0],
                  1. / model_options.output_stride)
              resize_width = scale_dimension(
                  model_options.crop_size[1],
                  1. / model_options.output_stride)
yukun's avatar
yukun committed
465
            else:
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
              # If crop_size is None, we simply do global pooling.
              pool_height = tf.shape(features)[1]
              pool_width = tf.shape(features)[2]
              image_feature = tf.reduce_mean(
                  features, axis=[1, 2], keepdims=True)
              resize_height = pool_height
              resize_width = pool_width
            image_feature = slim.conv2d(
                image_feature, depth, 1, scope=IMAGE_POOLING_SCOPE)
            image_feature = _resize_bilinear(
                image_feature,
                [resize_height, resize_width],
                image_feature.dtype)
            # Set shape for resize_height/resize_width if they are not Tensor.
            if isinstance(resize_height, tf.Tensor):
              resize_height = None
            if isinstance(resize_width, tf.Tensor):
              resize_width = None
            image_feature.set_shape([None, resize_height, resize_width, depth])
            branch_logits.append(image_feature)

          # Employ a 1x1 convolution.
          branch_logits.append(slim.conv2d(features, depth, 1,
                                           scope=ASPP_SCOPE + str(0)))

          if model_options.atrous_rates:
            # Employ 3x3 convolutions with different atrous rates.
            for i, rate in enumerate(model_options.atrous_rates, 1):
              scope = ASPP_SCOPE + str(i)
              if model_options.aspp_with_separable_conv:
                aspp_features = split_separable_conv2d(
                    features,
                    filters=depth,
                    rate=rate,
                    weight_decay=weight_decay,
                    scope=scope)
              else:
                aspp_features = slim.conv2d(
                    features, depth, 3, rate=rate, scope=scope)
              branch_logits.append(aspp_features)

          # Merge branch logits.
          concat_logits = tf.concat(branch_logits, 3)
          concat_logits = slim.conv2d(
              concat_logits, depth, 1, scope=CONCAT_PROJECTION_SCOPE)
          concat_logits = slim.dropout(
              concat_logits,
              keep_prob=0.9,
              is_training=is_training,
              scope=CONCAT_PROJECTION_SCOPE + '_dropout')

          return concat_logits, end_points
yukun's avatar
yukun committed
518
519
520
521
522
523
524


def _get_logits(images,
                model_options,
                weight_decay=0.0001,
                reuse=None,
                is_training=False,
525
526
                fine_tune_batch_norm=False,
                nas_training_hyper_parameters=None):
yukun's avatar
yukun committed
527
528
529
530
531
532
533
534
535
  """Gets the logits by atrous/image spatial pyramid pooling.

  Args:
    images: A tensor of size [batch, height, width, channels].
    model_options: A ModelOptions instance to configure models.
    weight_decay: The weight decay for model variables.
    reuse: Reuse the model variables or not.
    is_training: Is training or not.
    fine_tune_batch_norm: Fine-tune the batch norm parameters or not.
536
537
538
539
540
541
    nas_training_hyper_parameters: A dictionary storing hyper-parameters for
      training nas models. Its keys are:
      - `drop_path_keep_prob`: Probability to keep each path in the cell when
        training.
      - `total_training_steps`: Total training steps to help drop path
        probability calculation.
yukun's avatar
yukun committed
542
543
544
545

  Returns:
    outputs_to_logits: A map from output_type to logits.
  """
546
  features, end_points = extract_features(
yukun's avatar
yukun committed
547
548
549
550
551
      images,
      model_options,
      weight_decay=weight_decay,
      reuse=reuse,
      is_training=is_training,
552
553
      fine_tune_batch_norm=fine_tune_batch_norm,
      nas_training_hyper_parameters=nas_training_hyper_parameters)
yukun's avatar
yukun committed
554
555
556
557
558

  if model_options.decoder_output_stride is not None:
    features = refine_by_decoder(
        features,
        end_points,
559
560
        crop_size=model_options.crop_size,
        decoder_output_stride=model_options.decoder_output_stride,
yukun's avatar
yukun committed
561
562
563
564
565
        decoder_use_separable_conv=model_options.decoder_use_separable_conv,
        model_variant=model_options.model_variant,
        weight_decay=weight_decay,
        reuse=reuse,
        is_training=is_training,
566
567
        fine_tune_batch_norm=fine_tune_batch_norm,
        use_bounded_activation=model_options.use_bounded_activation)
yukun's avatar
yukun committed
568
569
570

  outputs_to_logits = {}
  for output in sorted(model_options.outputs_to_num_classes):
571
    outputs_to_logits[output] = get_branch_logits(
yukun's avatar
yukun committed
572
573
574
575
576
577
578
579
580
581
582
583
584
585
        features,
        model_options.outputs_to_num_classes[output],
        model_options.atrous_rates,
        aspp_with_batch_norm=model_options.aspp_with_batch_norm,
        kernel_size=model_options.logits_kernel_size,
        weight_decay=weight_decay,
        reuse=reuse,
        scope_suffix=output)

  return outputs_to_logits


def refine_by_decoder(features,
                      end_points,
586
587
                      crop_size=None,
                      decoder_output_stride=None,
yukun's avatar
yukun committed
588
589
590
591
592
                      decoder_use_separable_conv=False,
                      model_variant=None,
                      weight_decay=0.0001,
                      reuse=None,
                      is_training=False,
593
594
                      fine_tune_batch_norm=False,
                      use_bounded_activation=False):
yukun's avatar
yukun committed
595
596
597
598
599
600
601
  """Adds the decoder to obtain sharper segmentation results.

  Args:
    features: A tensor of size [batch, features_height, features_width,
      features_channels].
    end_points: A dictionary from components of the network to the corresponding
      activation.
602
603
604
605
    crop_size: A tuple [crop_height, crop_width] specifying whole patch crop
      size.
    decoder_output_stride: A list of integers specifying the output stride of
      low-level features used in the decoder module.
yukun's avatar
yukun committed
606
607
608
609
610
611
    decoder_use_separable_conv: Employ separable convolution for decoder or not.
    model_variant: Model variant for feature extraction.
    weight_decay: The weight decay for model variables.
    reuse: Reuse the model variables or not.
    is_training: Is training or not.
    fine_tune_batch_norm: Fine-tune the batch norm parameters or not.
612
613
    use_bounded_activation: Whether or not to use bounded activations. Bounded
      activations better lend themselves to quantized inference.
yukun's avatar
yukun committed
614
615
616
617

  Returns:
    Decoder output with size [batch, decoder_height, decoder_width,
      decoder_channels].
618
619
620

  Raises:
    ValueError: If crop_size is None.
yukun's avatar
yukun committed
621
  """
622
623
  if crop_size is None:
    raise ValueError('crop_size must be provided when using decoder.')
yukun's avatar
yukun committed
624
625
626
627
628
629
630
631
632
633
  batch_norm_params = {
      'is_training': is_training and fine_tune_batch_norm,
      'decay': 0.9997,
      'epsilon': 1e-5,
      'scale': True,
  }

  with slim.arg_scope(
      [slim.conv2d, slim.separable_conv2d],
      weights_regularizer=slim.l2_regularizer(weight_decay),
634
      activation_fn=tf.nn.relu6 if use_bounded_activation else tf.nn.relu,
yukun's avatar
yukun committed
635
636
637
638
639
      normalizer_fn=slim.batch_norm,
      padding='SAME',
      stride=1,
      reuse=reuse):
    with slim.arg_scope([slim.batch_norm], **batch_norm_params):
640
      with tf.variable_scope(DECODER_SCOPE, DECODER_SCOPE, [features]):
641
642
643
644
645
646
647
648
649
650
651
        decoder_features = features
        decoder_stage = 0
        scope_suffix = ''
        for output_stride in decoder_output_stride:
          feature_list = feature_extractor.networks_to_feature_maps[
              model_variant][
                  feature_extractor.DECODER_END_POINTS][output_stride]
          # If only one decoder stage, we do not change the scope name in
          # order for backward compactibility.
          if decoder_stage:
            scope_suffix = '_{}'.format(decoder_stage)
yukun's avatar
yukun committed
652
653
          for i, name in enumerate(feature_list):
            decoder_features_list = [decoder_features]
654
655
            # MobileNet and NAS variants use different naming convention.
            if 'mobilenet' in model_variant or model_variant.startswith('nas'):
656
657
658
659
              feature_name = name
            else:
              feature_name = '{}/{}'.format(
                  feature_extractor.name_scope[model_variant], name)
yukun's avatar
yukun committed
660
661
662
663
664
            decoder_features_list.append(
                slim.conv2d(
                    end_points[feature_name],
                    48,
                    1,
665
666
667
668
                    scope='feature_projection' + str(i) + scope_suffix))
            # Determine the output size.
            decoder_height = scale_dimension(crop_size[0], 1.0 / output_stride)
            decoder_width = scale_dimension(crop_size[1], 1.0 / output_stride)
yukun's avatar
yukun committed
669
670
            # Resize to decoder_height/decoder_width.
            for j, feature in enumerate(decoder_features_list):
671
672
              decoder_features_list[j] = _resize_bilinear(
                  feature, [decoder_height, decoder_width], feature.dtype)
673
674
675
676
677
              h = (None if isinstance(decoder_height, tf.Tensor)
                   else decoder_height)
              w = (None if isinstance(decoder_width, tf.Tensor)
                   else decoder_width)
              decoder_features_list[j].set_shape([None, h, w, None])
yukun's avatar
yukun committed
678
679
            decoder_depth = 256
            if decoder_use_separable_conv:
680
              decoder_features = split_separable_conv2d(
yukun's avatar
yukun committed
681
682
683
684
                  tf.concat(decoder_features_list, 3),
                  filters=decoder_depth,
                  rate=1,
                  weight_decay=weight_decay,
685
                  scope='decoder_conv0' + scope_suffix)
686
              decoder_features = split_separable_conv2d(
yukun's avatar
yukun committed
687
688
689
690
                  decoder_features,
                  filters=decoder_depth,
                  rate=1,
                  weight_decay=weight_decay,
691
                  scope='decoder_conv1' + scope_suffix)
yukun's avatar
yukun committed
692
693
694
695
696
697
698
699
            else:
              num_convs = 2
              decoder_features = slim.repeat(
                  tf.concat(decoder_features_list, 3),
                  num_convs,
                  slim.conv2d,
                  decoder_depth,
                  3,
700
701
702
                  scope='decoder_conv' + str(i) + scope_suffix)
          decoder_stage += 1
        return decoder_features
yukun's avatar
yukun committed
703
704


705
706
707
708
709
710
711
712
def get_branch_logits(features,
                      num_classes,
                      atrous_rates=None,
                      aspp_with_batch_norm=False,
                      kernel_size=1,
                      weight_decay=0.0001,
                      reuse=None,
                      scope_suffix=''):
yukun's avatar
yukun committed
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
  """Gets the logits from each model's branch.

  The underlying model is branched out in the last layer when atrous
  spatial pyramid pooling is employed, and all branches are sum-merged
  to form the final logits.

  Args:
    features: A float tensor of shape [batch, height, width, channels].
    num_classes: Number of classes to predict.
    atrous_rates: A list of atrous convolution rates for last layer.
    aspp_with_batch_norm: Use batch normalization layers for ASPP.
    kernel_size: Kernel size for convolution.
    weight_decay: Weight decay for the model variables.
    reuse: Reuse model variables or not.
    scope_suffix: Scope suffix for the model variables.

  Returns:
    Merged logits with shape [batch, height, width, num_classes].

  Raises:
    ValueError: Upon invalid input kernel_size value.
  """
  # When using batch normalization with ASPP, ASPP has been applied before
736
  # in extract_features, and thus we simply apply 1x1 convolution here.
yukun's avatar
yukun committed
737
738
739
740
741
742
743
744
745
746
747
  if aspp_with_batch_norm or atrous_rates is None:
    if kernel_size != 1:
      raise ValueError('Kernel size must be 1 when atrous_rates is None or '
                       'using aspp_with_batch_norm. Gets %d.' % kernel_size)
    atrous_rates = [1]

  with slim.arg_scope(
      [slim.conv2d],
      weights_regularizer=slim.l2_regularizer(weight_decay),
      weights_initializer=tf.truncated_normal_initializer(stddev=0.01),
      reuse=reuse):
748
    with tf.variable_scope(LOGITS_SCOPE_NAME, LOGITS_SCOPE_NAME, [features]):
yukun's avatar
yukun committed
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
      branch_logits = []
      for i, rate in enumerate(atrous_rates):
        scope = scope_suffix
        if i:
          scope += '_%d' % i

        branch_logits.append(
            slim.conv2d(
                features,
                num_classes,
                kernel_size=kernel_size,
                rate=rate,
                activation_fn=None,
                normalizer_fn=None,
                scope=scope))

      return tf.add_n(branch_logits)