eval.py 8.76 KB
Newer Older
1
# Lint as: python2, python3
yukun's avatar
yukun committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Evaluation script for the DeepLab model.

See model.py for more details and usage.
"""

21
22
import numpy as np
import six
yukun's avatar
yukun committed
23
import tensorflow as tf
24
25
26
27
from tensorflow.contrib import metrics as contrib_metrics
from tensorflow.contrib import quantize as contrib_quantize
from tensorflow.contrib import tfprof as contrib_tfprof
from tensorflow.contrib import training as contrib_training
yukun's avatar
yukun committed
28
29
from deeplab import common
from deeplab import model
30
from deeplab.datasets import data_generator
yukun's avatar
yukun committed
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

flags = tf.app.flags
FLAGS = flags.FLAGS

flags.DEFINE_string('master', '', 'BNS name of the tensorflow server')

# Settings for log directories.

flags.DEFINE_string('eval_logdir', None, 'Where to write the event logs.')

flags.DEFINE_string('checkpoint_dir', None, 'Directory of model checkpoints.')

# Settings for evaluating the model.

flags.DEFINE_integer('eval_batch_size', 1,
                     'The number of images in each batch during evaluation.')

48
49
flags.DEFINE_list('eval_crop_size', '513,513',
                  'Image crop size [height, width] for evaluation.')
yukun's avatar
yukun committed
50
51
52
53
54

flags.DEFINE_integer('eval_interval_secs', 60 * 5,
                     'How often (in seconds) to run evaluation.')

# For `xception_65`, use atrous_rates = [12, 24, 36] if output_stride = 8, or
55
56
# rates = [6, 12, 18] if output_stride = 16. For `mobilenet_v2`, use None. Note
# one could use different atrous_rates/output_stride during training/evaluation.
yukun's avatar
yukun committed
57
58
59
60
61
62
63
64
65
66
67
68
69
70
flags.DEFINE_multi_integer('atrous_rates', None,
                           'Atrous rates for atrous spatial pyramid pooling.')

flags.DEFINE_integer('output_stride', 16,
                     'The ratio of input to output spatial resolution.')

# Change to [0.5, 0.75, 1.0, 1.25, 1.5, 1.75] for multi-scale test.
flags.DEFINE_multi_float('eval_scales', [1.0],
                         'The scales to resize images for evaluation.')

# Change to True for adding flipped images during test.
flags.DEFINE_bool('add_flipped_images', False,
                  'Add flipped images for evaluation or not.')

71
72
73
74
flags.DEFINE_integer(
    'quantize_delay_step', -1,
    'Steps to start quantized training. If < 0, will not quantize model.')

yukun's avatar
yukun committed
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
# Dataset settings.

flags.DEFINE_string('dataset', 'pascal_voc_seg',
                    'Name of the segmentation dataset.')

flags.DEFINE_string('eval_split', 'val',
                    'Which split of the dataset used for evaluation')

flags.DEFINE_string('dataset_dir', None, 'Where the dataset reside.')

flags.DEFINE_integer('max_number_of_evaluations', 0,
                     'Maximum number of eval iterations. Will loop '
                     'indefinitely upon nonpositive values.')


def main(unused_argv):
  tf.logging.set_verbosity(tf.logging.INFO)
92
93
94
95
96
97

  dataset = data_generator.Dataset(
      dataset_name=FLAGS.dataset,
      split_name=FLAGS.eval_split,
      dataset_dir=FLAGS.dataset_dir,
      batch_size=FLAGS.eval_batch_size,
98
      crop_size=[int(sz) for sz in FLAGS.eval_crop_size],
99
100
101
102
103
104
105
106
      min_resize_value=FLAGS.min_resize_value,
      max_resize_value=FLAGS.max_resize_value,
      resize_factor=FLAGS.resize_factor,
      model_variant=FLAGS.model_variant,
      num_readers=2,
      is_training=False,
      should_shuffle=False,
      should_repeat=False)
yukun's avatar
yukun committed
107
108
109
110
111

  tf.gfile.MakeDirs(FLAGS.eval_logdir)
  tf.logging.info('Evaluating on %s set', FLAGS.eval_split)

  with tf.Graph().as_default():
112
    samples = dataset.get_one_shot_iterator().get_next()
yukun's avatar
yukun committed
113
114

    model_options = common.ModelOptions(
115
        outputs_to_num_classes={common.OUTPUT_TYPE: dataset.num_of_classes},
116
        crop_size=[int(sz) for sz in FLAGS.eval_crop_size],
yukun's avatar
yukun committed
117
118
119
        atrous_rates=FLAGS.atrous_rates,
        output_stride=FLAGS.output_stride)

120
121
122
    # Set shape in order for tf.contrib.tfprof.model_analyzer to work properly.
    samples[common.IMAGE].set_shape(
        [FLAGS.eval_batch_size,
123
124
         int(FLAGS.eval_crop_size[0]),
         int(FLAGS.eval_crop_size[1]),
125
         3])
yukun's avatar
yukun committed
126
127
128
129
130
131
    if tuple(FLAGS.eval_scales) == (1.0,):
      tf.logging.info('Performing single-scale test.')
      predictions = model.predict_labels(samples[common.IMAGE], model_options,
                                         image_pyramid=FLAGS.image_pyramid)
    else:
      tf.logging.info('Performing multi-scale test.')
132
133
134
135
      if FLAGS.quantize_delay_step >= 0:
        raise ValueError(
            'Quantize mode is not supported with multi-scale test.')

yukun's avatar
yukun committed
136
137
138
139
140
141
142
143
144
145
146
      predictions = model.predict_labels_multi_scale(
          samples[common.IMAGE],
          model_options=model_options,
          eval_scales=FLAGS.eval_scales,
          add_flipped_images=FLAGS.add_flipped_images)
    predictions = predictions[common.OUTPUT_TYPE]
    predictions = tf.reshape(predictions, shape=[-1])
    labels = tf.reshape(samples[common.LABEL], shape=[-1])
    weights = tf.to_float(tf.not_equal(labels, dataset.ignore_label))

    # Set ignore_label regions to label 0, because metrics.mean_iou requires
wonderit's avatar
wonderit committed
147
    # range of labels = [0, dataset.num_classes). Note the ignore_label regions
yukun's avatar
yukun committed
148
149
150
151
152
153
154
155
156
157
158
    # are not evaluated since the corresponding regions contain weights = 0.
    labels = tf.where(
        tf.equal(labels, dataset.ignore_label), tf.zeros_like(labels), labels)

    predictions_tag = 'miou'
    for eval_scale in FLAGS.eval_scales:
      predictions_tag += '_' + str(eval_scale)
    if FLAGS.add_flipped_images:
      predictions_tag += '_flipped'

    # Define the evaluation metric.
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
    metric_map = {}
    num_classes = dataset.num_of_classes
    metric_map['eval/%s_overall' % predictions_tag] = tf.metrics.mean_iou(
        labels=labels, predictions=predictions, num_classes=num_classes,
        weights=weights)
    # IoU for each class.
    one_hot_predictions = tf.one_hot(predictions, num_classes)
    one_hot_predictions = tf.reshape(one_hot_predictions, [-1, num_classes])
    one_hot_labels = tf.one_hot(labels, num_classes)
    one_hot_labels = tf.reshape(one_hot_labels, [-1, num_classes])
    for c in range(num_classes):
      predictions_tag_c = '%s_class_%d' % (predictions_tag, c)
      tp, tp_op = tf.metrics.true_positives(
          labels=one_hot_labels[:, c], predictions=one_hot_predictions[:, c],
          weights=weights)
      fp, fp_op = tf.metrics.false_positives(
          labels=one_hot_labels[:, c], predictions=one_hot_predictions[:, c],
          weights=weights)
      fn, fn_op = tf.metrics.false_negatives(
          labels=one_hot_labels[:, c], predictions=one_hot_predictions[:, c],
          weights=weights)
      tp_fp_fn_op = tf.group(tp_op, fp_op, fn_op)
      iou = tf.where(tf.greater(tp + fn, 0.0),
                     tp / (tp + fn + fp),
                     tf.constant(np.NaN))
      metric_map['eval/%s' % predictions_tag_c] = (iou, tp_fp_fn_op)

    (metrics_to_values,
     metrics_to_updates) = contrib_metrics.aggregate_metric_map(metric_map)

    summary_ops = []
    for metric_name, metric_value in six.iteritems(metrics_to_values):
      op = tf.summary.scalar(metric_name, metric_value)
      op = tf.Print(op, [metric_value], metric_name)
      summary_ops.append(op)

    summary_op = tf.summary.merge(summary_ops)
    summary_hook = contrib_training.SummaryAtEndHook(
197
198
        log_dir=FLAGS.eval_logdir, summary_op=summary_op)
    hooks = [summary_hook]
yukun's avatar
yukun committed
199
200
201
202

    num_eval_iters = None
    if FLAGS.max_number_of_evaluations > 0:
      num_eval_iters = FLAGS.max_number_of_evaluations
203

204
    if FLAGS.quantize_delay_step >= 0:
205
      contrib_quantize.create_eval_graph()
206

207
    contrib_tfprof.model_analyzer.print_model_analysis(
208
        tf.get_default_graph(),
209
210
211
        tfprof_options=contrib_tfprof.model_analyzer
        .TRAINABLE_VARS_PARAMS_STAT_OPTIONS)
    contrib_tfprof.model_analyzer.print_model_analysis(
212
        tf.get_default_graph(),
213
214
        tfprof_options=contrib_tfprof.model_analyzer.FLOAT_OPS_OPTIONS)
    contrib_training.evaluate_repeatedly(
yukun's avatar
yukun committed
215
        checkpoint_dir=FLAGS.checkpoint_dir,
216
217
        master=FLAGS.master,
        eval_ops=list(metrics_to_updates.values()),
yukun's avatar
yukun committed
218
        max_number_of_evaluations=num_eval_iters,
219
        hooks=hooks,
yukun's avatar
yukun committed
220
221
222
223
224
225
226
227
        eval_interval_secs=FLAGS.eval_interval_secs)


if __name__ == '__main__':
  flags.mark_flag_as_required('checkpoint_dir')
  flags.mark_flag_as_required('eval_logdir')
  flags.mark_flag_as_required('dataset_dir')
  tf.app.run()