classification_input.py 7.57 KB
Newer Older
Yeqing Li's avatar
Yeqing Li committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Yeqing Li's avatar
Yeqing Li committed
14

Abdullah Rashwan's avatar
Abdullah Rashwan committed
15
"""Classification decoder and parser."""
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
16
from typing import Any, Dict, List, Optional
Abdullah Rashwan's avatar
Abdullah Rashwan committed
17
18
19
# Import libraries
import tensorflow as tf

20
from official.vision.beta.configs import common
Abdullah Rashwan's avatar
Abdullah Rashwan committed
21
22
from official.vision.beta.dataloaders import decoder
from official.vision.beta.dataloaders import parser
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
23
from official.vision.beta.ops import augment
Abdullah Rashwan's avatar
Abdullah Rashwan committed
24
25
26
27
28
from official.vision.beta.ops import preprocess_ops

MEAN_RGB = (0.485 * 255, 0.456 * 255, 0.406 * 255)
STDDEV_RGB = (0.229 * 255, 0.224 * 255, 0.225 * 255)

Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
29
30
31
DEFAULT_IMAGE_FIELD_KEY = 'image/encoded'
DEFAULT_LABEL_FIELD_KEY = 'image/class/label'

Abdullah Rashwan's avatar
Abdullah Rashwan committed
32
33
34
35

class Decoder(decoder.Decoder):
  """A tf.Example decoder for classification task."""

Fan Yang's avatar
Fan Yang committed
36
  def __init__(self,
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
               image_field_key: str = DEFAULT_IMAGE_FIELD_KEY,
               label_field_key: str = DEFAULT_LABEL_FIELD_KEY,
               is_multilabel: bool = False,
               keys_to_features: Optional[Dict[str, Any]] = None):
    if not keys_to_features:
      keys_to_features = {
          image_field_key:
              tf.io.FixedLenFeature((), tf.string, default_value=''),
      }
      if is_multilabel:
        keys_to_features.update(
            {label_field_key: tf.io.VarLenFeature(dtype=tf.int64)})
      else:
        keys_to_features.update({
            label_field_key:
                tf.io.FixedLenFeature((), tf.int64, default_value=-1)
        })
    self._keys_to_features = keys_to_features
Abdullah Rashwan's avatar
Abdullah Rashwan committed
55

Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
56
  def decode(self, serialized_example):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
57
58
59
60
61
62
63
64
    return tf.io.parse_single_example(
        serialized_example, self._keys_to_features)


class Parser(parser.Parser):
  """Parser to parse an image and its annotations into a dictionary of tensors."""

  def __init__(self,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
65
66
               output_size: List[int],
               num_classes: float,
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
67
68
               image_field_key: str = DEFAULT_IMAGE_FIELD_KEY,
               label_field_key: str = DEFAULT_LABEL_FIELD_KEY,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
69
               aug_rand_hflip: bool = True,
70
               aug_type: Optional[common.Augmentation] = None,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
71
               is_multilabel: bool = False,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
72
               dtype: str = 'float32'):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
73
74
75
    """Initializes parameters for parsing annotations in the dataset.

    Args:
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
76
      output_size: `Tensor` or `list` for [height, width] of output image. The
Abdullah Rashwan's avatar
Abdullah Rashwan committed
77
78
        output_size should be divided by the largest feature stride 2^max_level.
      num_classes: `float`, number of classes.
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
79
80
      image_field_key: `str`, the key name to encoded image in tf.Example.
      label_field_key: `str`, the key name to label in tf.Example.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
81
82
      aug_rand_hflip: `bool`, if True, augment training with random
        horizontal flip.
83
84
      aug_type: An optional Augmentation object to choose from AutoAugment and
        RandAugment.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
85
      is_multilabel: A `bool`, whether or not each example has multiple labels.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
86
87
88
89
90
91
      dtype: `str`, cast output image in dtype. It can be 'float32', 'float16',
        or 'bfloat16'.
    """
    self._output_size = output_size
    self._aug_rand_hflip = aug_rand_hflip
    self._num_classes = num_classes
Fan Yang's avatar
Fan Yang committed
92
    self._image_field_key = image_field_key
Abdullah Rashwan's avatar
Abdullah Rashwan committed
93
94
95
96
97
98
99
100
    if dtype == 'float32':
      self._dtype = tf.float32
    elif dtype == 'float16':
      self._dtype = tf.float16
    elif dtype == 'bfloat16':
      self._dtype = tf.bfloat16
    else:
      raise ValueError('dtype {!r} is not supported!'.format(dtype))
101
102
103
104
105
106
107
    if aug_type:
      if aug_type.type == 'autoaug':
        self._augmenter = augment.AutoAugment(
            augmentation_name=aug_type.autoaug.augmentation_name,
            cutout_const=aug_type.autoaug.cutout_const,
            translate_const=aug_type.autoaug.translate_const)
      elif aug_type.type == 'randaug':
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
108
        self._augmenter = augment.RandAugment(
109
110
111
            num_layers=aug_type.randaug.num_layers,
            magnitude=aug_type.randaug.magnitude,
            cutout_const=aug_type.randaug.cutout_const,
Fan Yang's avatar
Fan Yang committed
112
113
            translate_const=aug_type.randaug.translate_const,
            prob_to_apply=aug_type.randaug.prob_to_apply)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
114
      else:
115
116
        raise ValueError('Augmentation policy {} not supported.'.format(
            aug_type.type))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
117
118
    else:
      self._augmenter = None
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
119
120
    self._label_field_key = label_field_key
    self._is_multilabel = is_multilabel
Abdullah Rashwan's avatar
Abdullah Rashwan committed
121
122
123

  def _parse_train_data(self, decoded_tensors):
    """Parses data for training."""
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
124
125
126
127
128
129
130
131
132
133
134
    image = self._parse_train_image(decoded_tensors)
    label = tf.cast(decoded_tensors[self._label_field_key], dtype=tf.int32)
    if self._is_multilabel:
      if isinstance(label, tf.sparse.SparseTensor):
        label = tf.sparse.to_dense(label)
      label = tf.reduce_sum(tf.one_hot(label, self._num_classes), axis=0)
    return image, label

  def _parse_eval_data(self, decoded_tensors):
    """Parses data for evaluation."""
    image = self._parse_eval_image(decoded_tensors)
Fan Yang's avatar
Fan Yang committed
135
    label = tf.cast(decoded_tensors[self._label_field_key], dtype=tf.int32)
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
136
137
138
139
140
141
142
143
    if self._is_multilabel:
      if isinstance(label, tf.sparse.SparseTensor):
        label = tf.sparse.to_dense(label)
      label = tf.reduce_sum(tf.one_hot(label, self._num_classes), axis=0)
    return image, label

  def _parse_train_image(self, decoded_tensors):
    """Parses image data for training."""
Fan Yang's avatar
Fan Yang committed
144
    image_bytes = decoded_tensors[self._image_field_key]
Abdullah Rashwan's avatar
Abdullah Rashwan committed
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
    image_shape = tf.image.extract_jpeg_shape(image_bytes)

    # Crops image.
    # TODO(pengchong): support image format other than JPEG.
    cropped_image = preprocess_ops.random_crop_image_v2(
        image_bytes, image_shape)
    image = tf.cond(
        tf.reduce_all(tf.equal(tf.shape(cropped_image), image_shape)),
        lambda: preprocess_ops.center_crop_image_v2(image_bytes, image_shape),
        lambda: cropped_image)

    if self._aug_rand_hflip:
      image = tf.image.random_flip_left_right(image)

    # Resizes image.
    image = tf.image.resize(
        image, self._output_size, method=tf.image.ResizeMethod.BILINEAR)

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
163
164
165
166
    # Apply autoaug or randaug.
    if self._augmenter is not None:
      image = self._augmenter.distort(image)

Abdullah Rashwan's avatar
Abdullah Rashwan committed
167
168
169
170
171
172
173
174
    # Normalizes image with mean and std pixel values.
    image = preprocess_ops.normalize_image(image,
                                           offset=MEAN_RGB,
                                           scale=STDDEV_RGB)

    # Convert image to self._dtype.
    image = tf.image.convert_image_dtype(image, self._dtype)

Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
175
    return image
Abdullah Rashwan's avatar
Abdullah Rashwan committed
176

Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
177
178
  def _parse_eval_image(self, decoded_tensors):
    """Parses image data for evaluation."""
Fan Yang's avatar
Fan Yang committed
179
    image_bytes = decoded_tensors[self._image_field_key]
Abdullah Rashwan's avatar
Abdullah Rashwan committed
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
    image_shape = tf.image.extract_jpeg_shape(image_bytes)

    # Center crops and resizes image.
    image = preprocess_ops.center_crop_image_v2(image_bytes, image_shape)

    image = tf.image.resize(
        image, self._output_size, method=tf.image.ResizeMethod.BILINEAR)

    image = tf.reshape(image, [self._output_size[0], self._output_size[1], 3])

    # Normalizes image with mean and std pixel values.
    image = preprocess_ops.normalize_image(image,
                                           offset=MEAN_RGB,
                                           scale=STDDEV_RGB)

    # Convert image to self._dtype.
    image = tf.image.convert_image_dtype(image, self._dtype)

Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
198
    return image