prado.py 7.84 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
# Copyright 2020 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# Lint as: python3
"""Implementation of PRADO model."""

import copy
from absl import logging
import numpy as np
import tensorflow as tf

from layers import base_layers # import seq_flow_lite module
from layers import conv_layers # import seq_flow_lite module
from layers import dense_layers # import seq_flow_lite module
from layers import projection_layers # import seq_flow_lite module
from layers import quantization_layers # import seq_flow_lite module
from tf_ops import tf_custom_ops_py # import seq_flow_lite module


class PaddedMaskedVarLenConv(conv_layers.EncoderQConvolutionVarLen):
  """A layer that performs padded masked convolution."""

  def __init__(self, invalid_value, ngram=2, skip_bigram=None, **kwargs):
    self.invalid_value = invalid_value
    assert ngram is None or (ngram >= 1 and ngram <= 5)
    assert skip_bigram is None or skip_bigram == 1 or skip_bigram == 2
    assert bool(ngram is None) != bool(skip_bigram is None)
    self.kwidth = ngram if ngram is not None else (skip_bigram + 2)
    mask = [1] * self.kwidth
    if skip_bigram is not None:
      mask[1], mask[skip_bigram] = 0, 0
    self.mask = np.array(mask, dtype="float32").reshape((1, self.kwidth, 1, 1))
    self.zero_pad = tf.keras.layers.ZeroPadding1D(padding=[0, self.kwidth - 1])
    super(PaddedMaskedVarLenConv, self).__init__(
        ksize=self.kwidth, rank=3, padding="VALID", activation=None, **kwargs)

  def call(self, inputs, mask, inverse_normalizer):
    self._assert_rank_and_type(inputs, 3)
    self._assert_rank_and_type(mask, 3)
    maskr4 = tf.expand_dims(mask, axis=1)
    inputs_padded = self.zero_pad(inputs)
    result = super(PaddedMaskedVarLenConv, self).call(inputs_padded, maskr4,
                                                      inverse_normalizer)
    if self.parameters.mode not in [base_layers.PREDICT, base_layers.TFLITE]:
      return result * mask + (1 - mask) * self.invalid_value
    return result

  def add_qweight(self, shape, num_bits=8):
    weight = super(PaddedMaskedVarLenConv, self).add_qweight(
        shape=shape, num_bits=num_bits)
    return weight * tf.convert_to_tensor(self.mask)


class AttentionPoolReduce(base_layers.BaseLayer):
  """Attention pooling and reduce."""

  def __init__(self, filters, ngram=2, skip_bigram=None, **kwargs):
    super(AttentionPoolReduce, self).__init__(**kwargs)
    self.filters = filters
    self.value = PaddedMaskedVarLenConv(
        0, filters=filters, ngram=ngram, skip_bigram=skip_bigram, **kwargs)
    self.attention_logits = PaddedMaskedVarLenConv(
        self.parameters.invalid_logit,
        filters=filters,
        ngram=ngram,
        skip_bigram=skip_bigram,
        **kwargs)

  def call(self, values_in, attention_in, mask, inverse_normalizer):
    self._assert_rank_and_type(values_in, 3)
    self._assert_rank_and_type(attention_in, 3)
    self._assert_rank_and_type(mask, 3)
    values = self.value(values_in, mask, inverse_normalizer)
    attention_logits = self.attention_logits(attention_in, mask,
                                             inverse_normalizer)

    if self.parameters.mode == base_layers.TFLITE:
      return tf_custom_ops_py.expected_value_op(attention_logits, values)
    else:
      attention_logits = tf.transpose(attention_logits, [0, 2, 1])
      values = tf.transpose(values, [0, 2, 1])
      attention = tf.nn.softmax(attention_logits)
      return tf.reduce_sum(attention * values, axis=2)


class Encoder(tf.keras.layers.Layer):
  """A PRADO keras model."""

  def __init__(self, config, mode):
    super(Encoder, self).__init__()

    def _get_params(varname, default_value=None):
      value = config[varname] if varname in config else default_value
      default = "" if varname in config else " (default)"
      logging.info("%s = %s%s", varname, value, default)
      setattr(self, varname, value)

    _get_params("labels")
    _get_params("quantize", True)
    _get_params("embedding_regularizer_scale", 35e-3)
    _get_params("embedding_size", 64)
    _get_params("unigram_channels", 0)
    _get_params("bigram_channels", 0)
    _get_params("trigram_channels", 0)
    _get_params("fourgram_channels", 0)
    _get_params("fivegram_channels", 0)
    _get_params("skip1bigram_channels", 0)
    _get_params("skip2bigram_channels", 0)
    _get_params("network_regularizer_scale", 1e-4)
    _get_params("keep_prob", 0.5)
    self.num_classes = len(self.labels)

    self.parameters = base_layers.Parameters(
        mode,
        quantize=self.quantize,
        regularizer_scale=self.embedding_regularizer_scale)
    self.values_fc = dense_layers.BaseQDenseVarLen(
        units=self.embedding_size, rank=3, parameters=self.parameters)
    self.attention_fc = dense_layers.BaseQDenseVarLen(
        units=self.embedding_size, rank=3, parameters=self.parameters)
    self.dropout = tf.keras.layers.Dropout(rate=(1 - self.keep_prob))

    self.parameters = copy.copy(self.parameters)
    self.parameters.regularizer_scale = self.network_regularizer_scale
    self.attention_pool_layers = []
    self._add_attention_pool_layer(self.unigram_channels, 1)
    self._add_attention_pool_layer(self.bigram_channels, 2)
    self._add_attention_pool_layer(self.trigram_channels, 3)
    self._add_attention_pool_layer(self.fourgram_channels, 4)
    self._add_attention_pool_layer(self.fivegram_channels, 5)
    self._add_attention_pool_layer(self.skip1bigram_channels, None, 1)
    self._add_attention_pool_layer(self.skip2bigram_channels, None, 2)

    self.concat_quantizer = quantization_layers.ConcatQuantization(
        axis=1, parameters=self.parameters)
    self.final_fc = dense_layers.BaseQDense(
        units=self.num_classes,
        rank=2,
        parameters=self.parameters,
        activation=None)

  def _add_attention_pool_layer(self, channels, ngram, skip_bigram=None):
    if channels > 0:
      self.attention_pool_layers.append(
          AttentionPoolReduce(
              filters=channels,
              skip_bigram=skip_bigram,
              ngram=ngram,
              parameters=self.parameters))

  def _apply_fc_dropout(self, layer, inputs, mask, inverse_normalizer):
    outputs = layer(inputs, mask, inverse_normalizer)
    if self.parameters.mode == base_layers.TRAIN:
      return self.dropout(outputs)
    return outputs

  def call(self, projection, seq_length):
    mask = tf.sequence_mask(
        seq_length, tf.shape(projection)[1], dtype=tf.float32)
    inverse_normalizer = tf.math.reciprocal(tf.reduce_sum(mask))
    maskr3 = tf.expand_dims(mask, axis=2)
    values_in = self._apply_fc_dropout(self.values_fc, projection, mask,
                                       inverse_normalizer)
    attention_in = self._apply_fc_dropout(self.attention_fc, projection, mask,
                                          inverse_normalizer)
    tensors = [
        layer(values_in, attention_in, maskr3, inverse_normalizer)
        for layer in self.attention_pool_layers
    ]
    pre_logits = self.concat_quantizer(tensors)
    return self.final_fc(pre_logits)


class Model(Encoder):

  def __init__(self, config, mode):
    super(Model, self).__init__(config, mode)
    self.projection = projection_layers.ProjectionLayer(config, mode)

  def call(self, inputs):
    projection, seq_length = self.projection(inputs)
    return super(Model, self).call(projection, seq_length)