retinanet.py 13.6 KB
Newer Older
Yeqing Li's avatar
Yeqing Li committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Yeqing Li's avatar
Yeqing Li committed
14

Abdullah Rashwan's avatar
Abdullah Rashwan committed
15
"""RetinaNet task definition."""
Abdullah Rashwan's avatar
Abdullah Rashwan committed
16
from typing import Any, List, Mapping, Optional, Tuple
Abdullah Rashwan's avatar
Abdullah Rashwan committed
17
18
19

from absl import logging
import tensorflow as tf
Abdullah Rashwan's avatar
Abdullah Rashwan committed
20

21
from official.common import dataset_fn
Abdullah Rashwan's avatar
Abdullah Rashwan committed
22
23
24
from official.core import base_task
from official.core import task_factory
from official.vision.beta.configs import retinanet as exp_cfg
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
25
from official.vision.beta.dataloaders import input_reader_factory
Abdullah Rashwan's avatar
Abdullah Rashwan committed
26
27
from official.vision.beta.dataloaders import retinanet_input
from official.vision.beta.dataloaders import tf_example_decoder
Abdullah Rashwan's avatar
Abdullah Rashwan committed
28
from official.vision.beta.dataloaders import tfds_factory
Abdullah Rashwan's avatar
Abdullah Rashwan committed
29
30
from official.vision.beta.dataloaders import tf_example_label_map_decoder
from official.vision.beta.evaluation import coco_evaluator
Abdullah Rashwan's avatar
Abdullah Rashwan committed
31
32
from official.vision.beta.losses import focal_loss
from official.vision.beta.losses import loss_utils
Abdullah Rashwan's avatar
Abdullah Rashwan committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
from official.vision.beta.modeling import factory


@task_factory.register_task_cls(exp_cfg.RetinaNetTask)
class RetinaNetTask(base_task.Task):
  """A single-replica view of training procedure.

  RetinaNet task provides artifacts for training/evalution procedures, including
  loading/iterating over Datasets, initializing the model, calculating the loss,
  post-processing, and customized metrics with reduction.
  """

  def build_model(self):
    """Build RetinaNet model."""

    input_specs = tf.keras.layers.InputSpec(
        shape=[None] + self.task_config.model.input_size)

    l2_weight_decay = self.task_config.losses.l2_weight_decay
    # Divide weight decay by 2.0 to match the implementation of tf.nn.l2_loss.
    # (https://www.tensorflow.org/api_docs/python/tf/keras/regularizers/l2)
    # (https://www.tensorflow.org/api_docs/python/tf/nn/l2_loss)
    l2_regularizer = (tf.keras.regularizers.l2(
        l2_weight_decay / 2.0) if l2_weight_decay else None)

    model = factory.build_retinanet(
        input_specs=input_specs,
        model_config=self.task_config.model,
        l2_regularizer=l2_regularizer)
    return model

  def initialize(self, model: tf.keras.Model):
    """Loading pretrained checkpoint."""
    if not self.task_config.init_checkpoint:
      return

    ckpt_dir_or_file = self.task_config.init_checkpoint
    if tf.io.gfile.isdir(ckpt_dir_or_file):
      ckpt_dir_or_file = tf.train.latest_checkpoint(ckpt_dir_or_file)

    # Restoring checkpoint.
    if self.task_config.init_checkpoint_modules == 'all':
      ckpt = tf.train.Checkpoint(**model.checkpoint_items)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
76
77
      status = ckpt.read(ckpt_dir_or_file)
      status.expect_partial().assert_existing_objects_matched()
Xianzhi Du's avatar
Xianzhi Du committed
78
79
80
81
82
83
84
85
    else:
      ckpt_items = {}
      if 'backbone' in self.task_config.init_checkpoint_modules:
        ckpt_items.update(backbone=model.backbone)
      if 'decoder' in self.task_config.init_checkpoint_modules:
        ckpt_items.update(decoder=model.decoder)

      ckpt = tf.train.Checkpoint(**ckpt_items)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
86
      status = ckpt.read(ckpt_dir_or_file)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
87
88
89
90
91
      status.expect_partial().assert_existing_objects_matched()

    logging.info('Finished loading pretrained checkpoint from %s',
                 ckpt_dir_or_file)

Fan Yang's avatar
Fan Yang committed
92
93
94
  def build_inputs(self,
                   params: exp_cfg.DataConfig,
                   input_context: Optional[tf.distribute.InputContext] = None):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
95
    """Build input dataset."""
Abdullah Rashwan's avatar
Abdullah Rashwan committed
96
97

    if params.tfds_name:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
98
      decoder = tfds_factory.get_detection_decoder(params.tfds_name)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
99
    else:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
100
101
102
103
104
105
106
107
108
109
110
      decoder_cfg = params.decoder.get()
      if params.decoder.type == 'simple_decoder':
        decoder = tf_example_decoder.TfExampleDecoder(
            regenerate_source_id=decoder_cfg.regenerate_source_id)
      elif params.decoder.type == 'label_map_decoder':
        decoder = tf_example_label_map_decoder.TfExampleDecoderLabelMap(
            label_map=decoder_cfg.label_map,
            regenerate_source_id=decoder_cfg.regenerate_source_id)
      else:
        raise ValueError('Unknown decoder type: {}!'.format(
            params.decoder.type))
Abdullah Rashwan's avatar
Abdullah Rashwan committed
111

Abdullah Rashwan's avatar
Abdullah Rashwan committed
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
    parser = retinanet_input.Parser(
        output_size=self.task_config.model.input_size[:2],
        min_level=self.task_config.model.min_level,
        max_level=self.task_config.model.max_level,
        num_scales=self.task_config.model.anchor.num_scales,
        aspect_ratios=self.task_config.model.anchor.aspect_ratios,
        anchor_size=self.task_config.model.anchor.anchor_size,
        dtype=params.dtype,
        match_threshold=params.parser.match_threshold,
        unmatched_threshold=params.parser.unmatched_threshold,
        aug_rand_hflip=params.parser.aug_rand_hflip,
        aug_scale_min=params.parser.aug_scale_min,
        aug_scale_max=params.parser.aug_scale_max,
        skip_crowd_during_training=params.parser.skip_crowd_during_training,
        max_num_instances=params.parser.max_num_instances)

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
128
    reader = input_reader_factory.input_reader_generator(
Abdullah Rashwan's avatar
Abdullah Rashwan committed
129
        params,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
130
        dataset_fn=dataset_fn.pick_dataset_fn(params.file_type),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
131
132
133
134
135
136
        decoder_fn=decoder.decode,
        parser_fn=parser.parse_fn(params.is_training))
    dataset = reader.read(input_context=input_context)

    return dataset

Xianzhi Du's avatar
Xianzhi Du committed
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
  def build_attribute_loss(self,
                           attribute_heads: List[exp_cfg.AttributeHead],
                           outputs: Mapping[str, Any],
                           labels: Mapping[str, Any],
                           box_sample_weight: tf.Tensor) -> float:
    """Computes attribute loss.

    Args:
      attribute_heads: a list of attribute head configs.
      outputs: RetinaNet model outputs.
      labels: RetinaNet labels.
      box_sample_weight: normalized bounding box sample weights.

    Returns:
      Attribute loss of all attribute heads.
    """
    attribute_loss = 0.0
    for head in attribute_heads:
      if head.name not in labels['attribute_targets']:
        raise ValueError(f'Attribute {head.name} not found in label targets.')
      if head.name not in outputs['attribute_outputs']:
        raise ValueError(f'Attribute {head.name} not found in model outputs.')

Abdullah Rashwan's avatar
Abdullah Rashwan committed
160
      y_true_att = loss_utils.multi_level_flatten(
Xianzhi Du's avatar
Xianzhi Du committed
161
          labels['attribute_targets'][head.name], last_dim=head.size)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
162
      y_pred_att = loss_utils.multi_level_flatten(
Xianzhi Du's avatar
Xianzhi Du committed
163
164
165
166
167
168
169
170
171
172
173
174
175
176
          outputs['attribute_outputs'][head.name], last_dim=head.size)
      if head.type == 'regression':
        att_loss_fn = tf.keras.losses.Huber(
            1.0, reduction=tf.keras.losses.Reduction.SUM)
        att_loss = att_loss_fn(
            y_true=y_true_att,
            y_pred=y_pred_att,
            sample_weight=box_sample_weight)
      else:
        raise ValueError(f'Attribute type {head.type} not supported.')
      attribute_loss += att_loss

    return attribute_loss

Fan Yang's avatar
Fan Yang committed
177
178
179
180
  def build_losses(self,
                   outputs: Mapping[str, Any],
                   labels: Mapping[str, Any],
                   aux_losses: Optional[Any] = None):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
181
182
    """Build RetinaNet losses."""
    params = self.task_config
Xianzhi Du's avatar
Xianzhi Du committed
183
184
    attribute_heads = self.task_config.model.head.attribute_heads

Abdullah Rashwan's avatar
Abdullah Rashwan committed
185
    cls_loss_fn = focal_loss.FocalLoss(
Abdullah Rashwan's avatar
Abdullah Rashwan committed
186
187
188
        alpha=params.losses.focal_loss_alpha,
        gamma=params.losses.focal_loss_gamma,
        reduction=tf.keras.losses.Reduction.SUM)
Zhenyu Tan's avatar
Zhenyu Tan committed
189
    box_loss_fn = tf.keras.losses.Huber(
Abdullah Rashwan's avatar
Abdullah Rashwan committed
190
191
192
193
194
195
196
197
198
        params.losses.huber_loss_delta, reduction=tf.keras.losses.Reduction.SUM)

    # Sums all positives in a batch for normalization and avoids zero
    # num_positives_sum, which would lead to inf loss during training
    cls_sample_weight = labels['cls_weights']
    box_sample_weight = labels['box_weights']
    num_positives = tf.reduce_sum(box_sample_weight) + 1.0
    cls_sample_weight = cls_sample_weight / num_positives
    box_sample_weight = box_sample_weight / num_positives
Abdullah Rashwan's avatar
Abdullah Rashwan committed
199
    y_true_cls = loss_utils.multi_level_flatten(
Zhenyu Tan's avatar
Zhenyu Tan committed
200
201
        labels['cls_targets'], last_dim=None)
    y_true_cls = tf.one_hot(y_true_cls, params.model.num_classes)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
202
    y_pred_cls = loss_utils.multi_level_flatten(
Zhenyu Tan's avatar
Zhenyu Tan committed
203
        outputs['cls_outputs'], last_dim=params.model.num_classes)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
204
    y_true_box = loss_utils.multi_level_flatten(
Zhenyu Tan's avatar
Zhenyu Tan committed
205
        labels['box_targets'], last_dim=4)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
206
    y_pred_box = loss_utils.multi_level_flatten(
Zhenyu Tan's avatar
Zhenyu Tan committed
207
208
        outputs['box_outputs'], last_dim=4)

Abdullah Rashwan's avatar
Abdullah Rashwan committed
209
    cls_loss = cls_loss_fn(
Zhenyu Tan's avatar
Zhenyu Tan committed
210
        y_true=y_true_cls, y_pred=y_pred_cls, sample_weight=cls_sample_weight)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
211
    box_loss = box_loss_fn(
Zhenyu Tan's avatar
Zhenyu Tan committed
212
        y_true=y_true_box, y_pred=y_pred_box, sample_weight=box_sample_weight)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
213
214
215

    model_loss = cls_loss + params.losses.box_loss_weight * box_loss

Xianzhi Du's avatar
Xianzhi Du committed
216
217
218
219
    if attribute_heads:
      model_loss += self.build_attribute_loss(attribute_heads, outputs, labels,
                                              box_sample_weight)

Abdullah Rashwan's avatar
Abdullah Rashwan committed
220
221
222
223
224
    total_loss = model_loss
    if aux_losses:
      reg_loss = tf.reduce_sum(aux_losses)
      total_loss = model_loss + reg_loss

Abdullah Rashwan's avatar
Abdullah Rashwan committed
225
226
    total_loss = params.losses.loss_weight * total_loss

Abdullah Rashwan's avatar
Abdullah Rashwan committed
227
228
    return total_loss, cls_loss, box_loss, model_loss

Fan Yang's avatar
Fan Yang committed
229
  def build_metrics(self, training: bool = True):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
230
231
232
233
234
235
236
    """Build detection metrics."""
    metrics = []
    metric_names = ['total_loss', 'cls_loss', 'box_loss', 'model_loss']
    for name in metric_names:
      metrics.append(tf.keras.metrics.Mean(name, dtype=tf.float32))

    if not training:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
237
238
239
      if self.task_config.validation_data.tfds_name and self.task_config.annotation_file:
        raise ValueError(
            "Can't evaluate using annotation file when TFDS is used.")
Abdullah Rashwan's avatar
Abdullah Rashwan committed
240
      self.coco_metric = coco_evaluator.COCOEvaluator(
Abdullah Rashwan's avatar
Abdullah Rashwan committed
241
          annotation_file=self.task_config.annotation_file,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
242
          include_mask=False,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
243
          per_category_metrics=self.task_config.per_category_metrics)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
244
245
246

    return metrics

Fan Yang's avatar
Fan Yang committed
247
248
249
250
251
  def train_step(self,
                 inputs: Tuple[Any, Any],
                 model: tf.keras.Model,
                 optimizer: tf.keras.optimizers.Optimizer,
                 metrics: Optional[List[Any]] = None):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
    """Does forward and backward.

    Args:
      inputs: a dictionary of input tensors.
      model: the model, forward pass definition.
      optimizer: the optimizer for this training step.
      metrics: a nested structure of metrics objects.

    Returns:
      A dictionary of logs.
    """
    features, labels = inputs
    num_replicas = tf.distribute.get_strategy().num_replicas_in_sync
    with tf.GradientTape() as tape:
      outputs = model(features, training=True)
      outputs = tf.nest.map_structure(
          lambda x: tf.cast(x, tf.float32), outputs)

      # Computes per-replica loss.
      loss, cls_loss, box_loss, model_loss = self.build_losses(
          outputs=outputs, labels=labels, aux_losses=model.losses)
      scaled_loss = loss / num_replicas

      # For mixed_precision policy, when LossScaleOptimizer is used, loss is
      # scaled for numerical stability.
Pankaj Kanwar's avatar
Pankaj Kanwar committed
277
      if isinstance(optimizer, tf.keras.mixed_precision.LossScaleOptimizer):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
278
279
280
281
282
        scaled_loss = optimizer.get_scaled_loss(scaled_loss)

    tvars = model.trainable_variables
    grads = tape.gradient(scaled_loss, tvars)
    # Scales back gradient when LossScaleOptimizer is used.
Pankaj Kanwar's avatar
Pankaj Kanwar committed
283
    if isinstance(optimizer, tf.keras.mixed_precision.LossScaleOptimizer):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
      grads = optimizer.get_unscaled_gradients(grads)
    optimizer.apply_gradients(list(zip(grads, tvars)))

    logs = {self.loss: loss}

    all_losses = {
        'total_loss': loss,
        'cls_loss': cls_loss,
        'box_loss': box_loss,
        'model_loss': model_loss,
    }
    if metrics:
      for m in metrics:
        m.update_state(all_losses[m.name])
        logs.update({m.name: m.result()})

    return logs

Fan Yang's avatar
Fan Yang committed
302
303
304
305
  def validation_step(self,
                      inputs: Tuple[Any, Any],
                      model: tf.keras.Model,
                      metrics: Optional[List[Any]] = None):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
    """Validatation step.

    Args:
      inputs: a dictionary of input tensors.
      model: the keras.Model.
      metrics: a nested structure of metrics objects.

    Returns:
      A dictionary of logs.
    """
    features, labels = inputs

    outputs = model(features, anchor_boxes=labels['anchor_boxes'],
                    image_shape=labels['image_info'][:, 1, :],
                    training=False)
    loss, cls_loss, box_loss, model_loss = self.build_losses(
        outputs=outputs, labels=labels, aux_losses=model.losses)
    logs = {self.loss: loss}

    all_losses = {
        'total_loss': loss,
        'cls_loss': cls_loss,
        'box_loss': box_loss,
        'model_loss': model_loss,
    }

    coco_model_outputs = {
        'detection_boxes': outputs['detection_boxes'],
        'detection_scores': outputs['detection_scores'],
        'detection_classes': outputs['detection_classes'],
        'num_detections': outputs['num_detections'],
        'source_id': labels['groundtruths']['source_id'],
        'image_info': labels['image_info']
    }
    logs.update({self.coco_metric.name: (labels['groundtruths'],
                                         coco_model_outputs)})
    if metrics:
      for m in metrics:
        m.update_state(all_losses[m.name])
        logs.update({m.name: m.result()})
    return logs

  def aggregate_logs(self, state=None, step_outputs=None):
    if state is None:
      self.coco_metric.reset_states()
      state = self.coco_metric
    self.coco_metric.update_state(step_outputs[self.coco_metric.name][0],
                                  step_outputs[self.coco_metric.name][1])
    return state

356
  def reduce_aggregated_logs(self, aggregated_logs, global_step=None):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
357
    return self.coco_metric.result()