transformer_benchmark.py 26.4 KB
Newer Older
Toby Boyd's avatar
Toby Boyd committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Executes Transformer w/Keras benchmark and accuracy tests."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import time

from absl import flags
Adrian Kuegel's avatar
Adrian Kuegel committed
24
import tensorflow as tf
Toby Boyd's avatar
Toby Boyd committed
25

26
27
from official.nlp.transformer import misc
from official.nlp.transformer import transformer_main as transformer_main
28
from official.utils.flags import core as flags_core
29
from official.utils.testing import benchmark_wrappers
Toby Boyd's avatar
Toby Boyd committed
30
31
32
33
34
from official.utils.testing.perfzero_benchmark import PerfZeroBenchmark

TRANSFORMER_EN2DE_DATA_DIR_NAME = 'wmt32k-en2de-official'
EN2DE_2014_BLEU_DATA_DIR_NAME = 'newstest2014'
FLAGS = flags.FLAGS
David Chen's avatar
David Chen committed
35
TMP_DIR = os.getenv('TMPDIR')
Toby Boyd's avatar
Toby Boyd committed
36
37
38
39
40
41
42
43
44
45
46


class TransformerBenchmark(PerfZeroBenchmark):
  """Methods common to executing transformer w/keras tests.

     Code under test for the Transformer Keras models report the same data and
     require the same FLAG setup.
  """

  def __init__(self, output_dir=None, default_flags=None, root_data_dir=None,
               flag_methods=None):
Hongkun Yu's avatar
Hongkun Yu committed
47
48
    # Due to xla legacy benchmark.
    tf.compat.v1.enable_v2_behavior()
Hongkun Yu's avatar
Hongkun Yu committed
49
50
    root_data_dir = root_data_dir if root_data_dir else ''

Toby Boyd's avatar
Toby Boyd committed
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
    self.train_data_dir = os.path.join(root_data_dir,
                                       TRANSFORMER_EN2DE_DATA_DIR_NAME)

    self.vocab_file = os.path.join(root_data_dir,
                                   TRANSFORMER_EN2DE_DATA_DIR_NAME,
                                   'vocab.ende.32768')

    self.bleu_source = os.path.join(root_data_dir,
                                    EN2DE_2014_BLEU_DATA_DIR_NAME,
                                    'newstest2014.en')

    self.bleu_ref = os.path.join(root_data_dir,
                                 EN2DE_2014_BLEU_DATA_DIR_NAME,
                                 'newstest2014.de')

David Chen's avatar
David Chen committed
66
67
    if default_flags is None:
      default_flags = {}
David Chen's avatar
David Chen committed
68
69
70
    default_flags['data_dir'] = self.train_data_dir
    default_flags['vocab_file'] = self.vocab_file

Toby Boyd's avatar
Toby Boyd committed
71
72
73
74
75
    super(TransformerBenchmark, self).__init__(
        output_dir=output_dir,
        default_flags=default_flags,
        flag_methods=flag_methods)

76
  @benchmark_wrappers.enable_runtime_flags
Toby Boyd's avatar
Toby Boyd committed
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
  def _run_and_report_benchmark(self,
                                bleu_max=None,
                                bleu_min=None,
                                log_steps=None,
                                total_batch_size=None,
                                warmup=1):
    """Report benchmark results by writing to local protobuf file.

    Args:
      bleu_max: highest passing level for bleu score.
      bleu_min: lowest passing level for bleu score.
      log_steps: How often the log was created for stats['step_timestamp_log'].
      total_batch_size: Global batch-size.
      warmup: number of entries in stats['step_timestamp_log'] to ignore.
    """
    start_time_sec = time.time()
    task = transformer_main.TransformerTask(FLAGS)
    stats = task.train()
    wall_time_sec = time.time() - start_time_sec

    metrics = []
    if 'bleu_uncased' in stats:
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
      if 'bleu_uncased_history' in stats:
        bleu_uncased_best = max(stats['bleu_uncased_history'],
                                key=lambda x: x[1])
        metrics.append({'name': 'bleu_uncased',
                        'value': bleu_uncased_best[1],
                        'min_value': bleu_min,
                        'max_value': bleu_max})
        metrics.append({'name': 'bleu_best_score_iteration',
                        'value': bleu_uncased_best[0]})
        metrics.append({'name': 'bleu_uncased_last',
                        'value': stats['bleu_uncased']})
      else:
        metrics.append({'name': 'bleu_uncased',
                        'value': stats['bleu_uncased'],
                        'min_value': bleu_min,
                        'max_value': bleu_max})
Toby Boyd's avatar
Toby Boyd committed
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

    if (warmup and 'step_timestamp_log' in stats and
        len(stats['step_timestamp_log']) > warmup):
      # first entry in the time_log is start of step 1. The rest of the
      # entries are the end of each step recorded
      time_log = stats['step_timestamp_log']
      elapsed = time_log[-1].timestamp - time_log[warmup].timestamp
      num_examples = (
          total_batch_size * log_steps * (len(time_log) - warmup - 1))
      examples_per_sec = num_examples / elapsed
      metrics.append({'name': 'exp_per_second',
                      'value': examples_per_sec})

    if 'avg_exp_per_second' in stats:
      metrics.append({'name': 'avg_exp_per_second',
                      'value': stats['avg_exp_per_second']})

132
133
134
    flags_str = flags_core.get_nondefault_flags_as_str()
    self.report_benchmark(iters=-1, wall_time=wall_time_sec, metrics=metrics,
                          extras={'flags': flags_str})
Toby Boyd's avatar
Toby Boyd committed
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169


class TransformerBaseKerasAccuracy(TransformerBenchmark):
  """Benchmark accuracy tests for Transformer Base model w/ Keras."""

  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
    """Benchmark accuracy tests for Transformer Base model w/ Keras.

    Args:
      output_dir: directory where to output e.g. log files
      root_data_dir: directory under which to look for dataset
      **kwargs: arbitrary named arguments. This is needed to make the
                constructor forward compatible in case PerfZero provides more
                named arguments before updating the constructor.
    """
    flag_methods = [misc.define_transformer_flags]

    super(TransformerBaseKerasAccuracy, self).__init__(
        output_dir=output_dir, root_data_dir=root_data_dir,
        flag_methods=flag_methods)

  def benchmark_1_gpu(self):
    """Benchmark 1 gpu.

      The paper uses 8 GPUs and a much larger effective batch size, this is will
      not converge to the 27.3 BLEU (uncased) SOTA.
    """
    self._setup()
    FLAGS.num_gpus = 1
    FLAGS.data_dir = self.train_data_dir
    FLAGS.vocab_file = self.vocab_file
    # Sets values directly to avoid validation check.
    FLAGS['bleu_source'].value = self.bleu_source
    FLAGS['bleu_ref'].value = self.bleu_ref
    FLAGS.param_set = 'base'
170
171
172
    FLAGS.batch_size = 2048
    FLAGS.train_steps = 1000
    FLAGS.steps_between_evals = 500
Toby Boyd's avatar
Toby Boyd committed
173
174
175
176
177
178
179
180
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu')
    # These bleu scores are based on test runs after at this limited
    # number of steps and batch size after verifying SOTA at 8xV100s.
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps,
                                   bleu_min=25.3,
                                   bleu_max=26)

181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
  def benchmark_1_gpu_static_batch(self):
    """Benchmark 1 gpu with static_batch.

      The paper uses 8 GPUs and a much larger effective batch size, this is will
      not converge to the 27.3 BLEU (uncased) SOTA.
    """
    self._setup()
    FLAGS.num_gpus = 1
    FLAGS.data_dir = self.train_data_dir
    FLAGS.vocab_file = self.vocab_file
    # Sets values directly to avoid validation check.
    FLAGS['bleu_source'].value = self.bleu_source
    FLAGS['bleu_ref'].value = self.bleu_ref
    FLAGS.param_set = 'base'
    FLAGS.batch_size = 4096
    FLAGS.train_steps = 100000
    FLAGS.steps_between_evals = 5000
    FLAGS.static_batch = True
199
    FLAGS.max_length = 64
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_static_batch')
    # These bleu scores are based on test runs after at this limited
    # number of steps and batch size after verifying SOTA at 8xV100s.
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps,
                                   bleu_min=25.3,
                                   bleu_max=26)

  def benchmark_8_gpu(self):
    """Benchmark 8 gpu.

      Should converge to 27.3 BLEU (uncased). This has not been confirmed yet.
    """
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.data_dir = self.train_data_dir
    FLAGS.vocab_file = self.vocab_file
    # Sets values directly to avoid validation check.
    FLAGS['bleu_source'].value = self.bleu_source
    FLAGS['bleu_ref'].value = self.bleu_ref
    FLAGS.param_set = 'base'
    FLAGS.batch_size = 4096*8
    FLAGS.train_steps = 100000
223
    FLAGS.steps_between_evals = 20000
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu')
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps,
                                   bleu_min=27,
                                   bleu_max=28)

  def benchmark_8_gpu_static_batch(self):
    """Benchmark 8 gpu.

      Should converge to 27.3 BLEU (uncased). This has not been confirmed yet.
    """
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.data_dir = self.train_data_dir
    FLAGS.vocab_file = self.vocab_file
    # Sets values directly to avoid validation check.
    FLAGS['bleu_source'].value = self.bleu_source
    FLAGS['bleu_ref'].value = self.bleu_ref
    FLAGS.param_set = 'base'
    FLAGS.batch_size = 4096*8
    FLAGS.train_steps = 100000
    FLAGS.static_batch = True
246
    FLAGS.max_length = 64
247
248
249
250
251
252
253
    FLAGS.steps_between_evals = 5000
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_static_batch')
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps,
                                   bleu_min=27,
                                   bleu_max=28)

Haoyu Zhang's avatar
Haoyu Zhang committed
254

255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
class TransformerBigKerasAccuracy(TransformerBenchmark):
  """Benchmark accuracy tests for Transformer Big model w/ Keras."""

  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
    """Benchmark accuracy tests for Transformer Big model w/ Keras.

    Args:
      output_dir: directory where to output e.g. log files
      root_data_dir: directory under which to look for dataset
      **kwargs: arbitrary named arguments. This is needed to make the
                constructor forward compatible in case PerfZero provides more
                named arguments before updating the constructor.
    """
    flag_methods = [misc.define_transformer_flags]

    super(TransformerBigKerasAccuracy, self).__init__(
        output_dir=output_dir, root_data_dir=root_data_dir,
        flag_methods=flag_methods)

  def benchmark_8_gpu(self):
    """Benchmark 8 gpu.

277
278
279
280
    Over 6 runs with eval every 20K steps the average highest value was 28.195
    (bleu uncased). 28.424 was the highest and 27.96 the lowest. The values are
    the highest value seen during a run and occurred at a median of iteration 9.
    Iterations are not epochs, an iteration is a number of steps between evals.
281
282
283
284
285
286
287
288
289
290
    """
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.data_dir = self.train_data_dir
    FLAGS.vocab_file = self.vocab_file
    # Sets values directly to avoid validation check.
    FLAGS['bleu_source'].value = self.bleu_source
    FLAGS['bleu_ref'].value = self.bleu_ref
    FLAGS.param_set = 'big'
    FLAGS.batch_size = 3072*8
291
    FLAGS.train_steps = 20000 * 12
292
    FLAGS.steps_between_evals = 20000
293
294
295
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu')
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps,
296
297
                                   bleu_min=27.9,
                                   bleu_max=29.2)
298
299
300
301

  def benchmark_8_gpu_static_batch(self):
    """Benchmark 8 gpu.

302
    Should converge to 28.4 BLEU (uncased). This has not be verified yet."
303
304
305
306
307
308
309
310
311
312
313
    """
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.data_dir = self.train_data_dir
    FLAGS.vocab_file = self.vocab_file
    # Sets values directly to avoid validation check.
    FLAGS['bleu_source'].value = self.bleu_source
    FLAGS['bleu_ref'].value = self.bleu_ref
    FLAGS.param_set = 'big'
    FLAGS.batch_size = 3072*8
    FLAGS.static_batch = True
314
    FLAGS.max_length = 64
315
    FLAGS.train_steps = 20000 * 12
Toby Boyd's avatar
Toby Boyd committed
316
    FLAGS.steps_between_evals = 20000
317
318
319
320
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_static_batch')
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps,
                                   bleu_min=28,
321
                                   bleu_max=29.2)
322

323
324
325
  def benchmark_8_gpu_fp16(self):
    """Benchmark 8 gpu with dynamic batch and fp16.

326
327
328
329
330
331
332
333
    Over 6 runs with eval every 20K steps the average highest value was 28.247
    (bleu uncased). 28.424 was the highest and 28.09 the lowest. The values are
    the highest value seen during a run and occurred at a median of iteration
    11. While this could be interpreted as worse than FP32, if looking at the
    first iteration at which 28 is passed FP16 performs equal and possibly
    better. Although not part of the initial test runs, the highest value
    recorded with the arguments below was 28.9 at iteration 12. Iterations are
    not epochs, an iteration is a number of steps between evals.
334
335
336
337
338
339
340
341
342
343
344
    """
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.data_dir = self.train_data_dir
    FLAGS.vocab_file = self.vocab_file
    # Sets values directly to avoid validation check.
    FLAGS['bleu_source'].value = self.bleu_source
    FLAGS['bleu_ref'].value = self.bleu_ref
    FLAGS.param_set = 'big'
    FLAGS.batch_size = 3072*8
345
    FLAGS.train_steps = 20000 * 12
346
347
348
349
350
    FLAGS.steps_between_evals = 20000
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_fp16')
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps,
                                   bleu_min=28,
351
                                   bleu_max=29.2)
352

Vinh Nguyen's avatar
Vinh Nguyen committed
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
  def benchmark_8_gpu_fp16_amp(self):
    """Benchmark 8 gpu with dynamic batch and fp16 with automatic mixed precision.

      Should converge to 28.4 BLEU (uncased). This has not be verified yet."
    """
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.fp16_implementation = 'graph_rewrite'
    FLAGS.data_dir = self.train_data_dir
    FLAGS.vocab_file = self.vocab_file
    # Sets values directly to avoid validation check.
    FLAGS['bleu_source'].value = self.bleu_source
    FLAGS['bleu_ref'].value = self.bleu_ref
    FLAGS.param_set = 'big'
    FLAGS.batch_size = 3072*8
    FLAGS.train_steps = 20000 * 12
    FLAGS.steps_between_evals = 20000
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_fp16_amp')
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps,
                                   bleu_min=28,
                                   bleu_max=29)
Hongkun Yu's avatar
Hongkun Yu committed
376

Toby Boyd's avatar
Toby Boyd committed
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
  def benchmark_8_gpu_static_batch_fp16(self):
    """Benchmark 8 gpu with static batch and fp16.

      Should converge to 28.4 BLEU (uncased). This has not be verified yet."
    """
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.data_dir = self.train_data_dir
    FLAGS.vocab_file = self.vocab_file
    # Sets values directly to avoid validation check.
    FLAGS['bleu_source'].value = self.bleu_source
    FLAGS['bleu_ref'].value = self.bleu_ref
    FLAGS.param_set = 'big'
    FLAGS.batch_size = 3072*8
    FLAGS.static_batch = True
    FLAGS.max_length = 64
    FLAGS.train_steps = 400000
    FLAGS.steps_between_evals = 20000
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_static_batch_fp16')
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps,
                                   bleu_min=28,
400
                                   bleu_max=29.2)
Toby Boyd's avatar
Toby Boyd committed
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426

  def benchmark_xla_8_gpu_static_batch_fp16(self):
    """Benchmark 8 gpu with static batch, XLA, and FP16.

      Should converge to 28.4 BLEU (uncased). This has not be verified yet."
    """
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_xla = True
    FLAGS.data_dir = self.train_data_dir
    FLAGS.vocab_file = self.vocab_file
    # Sets values directly to avoid validation check.
    FLAGS['bleu_source'].value = self.bleu_source
    FLAGS['bleu_ref'].value = self.bleu_ref
    FLAGS.param_set = 'big'
    FLAGS.batch_size = 3072*8
    FLAGS.static_batch = True
    FLAGS.max_length = 64
    FLAGS.train_steps = 400000
    FLAGS.steps_between_evals = 20000
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_xla_8_gpu_static_batch_fp16')
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps,
                                   bleu_min=28,
427
                                   bleu_max=29.2)
Toby Boyd's avatar
Toby Boyd committed
428

Toby Boyd's avatar
Toby Boyd committed
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451

class TransformerKerasBenchmark(TransformerBenchmark):
  """Benchmarks for Transformer (Base and Big) using Keras."""

  def __init__(self, output_dir=None, default_flags=None,
               root_data_dir=None, batch_per_gpu=4096):
    """Initialize.

    Args:
      output_dir: Based directory for saving artifacts, e.g. checkpoints.
      default_flags: default flags to use for all tests.
      root_data_dir: root directory for data, e.g. training.
      batch_per_gpu: batch size to use per gpu.
    """
    flag_methods = [misc.define_transformer_flags]
    self.batch_per_gpu = batch_per_gpu

    super(TransformerKerasBenchmark, self).__init__(
        output_dir=output_dir,
        default_flags=default_flags,
        root_data_dir=root_data_dir,
        flag_methods=flag_methods)

452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
  def benchmark_1_gpu_no_dist_strat(self):
    """Benchmark 1 gpu without distribution strategy."""
    self._setup()
    FLAGS.num_gpus = 1
    FLAGS.distribution_strategy = 'off'
    FLAGS.batch_size = self.batch_per_gpu
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_no_dist_strat')
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps)

  def benchmark_1_gpu_no_dist_strat_static_batch(self):
    """Benchmark 1 gpu without distribution strategy with static batch."""
    self._setup()
    FLAGS.num_gpus = 1
    FLAGS.distribution_strategy = 'off'
    FLAGS.batch_size = self.batch_per_gpu
guptapriya's avatar
guptapriya committed
468
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_no_ds_sb')
469
470
471
472
473
    FLAGS.static_batch = True
    FLAGS.max_length = 64
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps)

Toby Boyd's avatar
Toby Boyd committed
474
475
476
477
478
479
480
481
482
  def benchmark_1_gpu(self):
    """Benchmark 1 gpu."""
    self._setup()
    FLAGS.num_gpus = 1
    FLAGS.batch_size = self.batch_per_gpu
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu')
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps)

483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
  def benchmark_1_gpu_fp16(self):
    """Benchmark 1 gpu FP16."""
    self._setup()
    FLAGS.num_gpus = 1
    FLAGS.batch_size = self.batch_per_gpu
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_fp16')
    FLAGS.dtype = 'fp16'
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps)

  def benchmark_xla_1_gpu(self):
    """Benchmark 1 gpu w/xla."""
    self._setup()
    FLAGS.num_gpus = 1
    FLAGS.batch_size = self.batch_per_gpu
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu')
    FLAGS.enable_xla = True
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps)

  def benchmark_xla_1_gpu_fp16(self):
    """Benchmark 1 gpu w/xla and FP16."""
    self._setup()
    FLAGS.num_gpus = 1
    FLAGS.batch_size = self.batch_per_gpu
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_fp16')
    FLAGS.enable_xla = True
    FLAGS.dtype = 'fp16'
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps)

514
  def benchmark_1_gpu_static_batch(self):
515
    """Benchmark 1 gpu with static batch."""
516
517
518
519
520
    self._setup()
    FLAGS.num_gpus = 1
    FLAGS.batch_size = self.batch_per_gpu
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_static_batch')
    FLAGS.static_batch = True
521
    FLAGS.max_length = 64
522
523
524
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps)

525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
  def benchmark_xla_1_gpu_static_batch(self):
    """Benchmark 1 gpu with static batch w/xla."""
    self._setup()
    FLAGS.num_gpus = 1
    FLAGS.batch_size = self.batch_per_gpu
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_static_batch')
    FLAGS.static_batch = True
    FLAGS.max_length = 64
    FLAGS.enable_xla = True
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps)

  def benchmark_1_gpu_static_batch_fp16(self):
    """Benchmark 1 gpu with static batch FP16."""
    self._setup()
    FLAGS.num_gpus = 1
    FLAGS.batch_size = self.batch_per_gpu
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_static_batch_fp16')
    FLAGS.static_batch = True
    FLAGS.max_length = 64
    FLAGS.dtype = 'fp16'
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps)

  def benchmark_xla_1_gpu_static_batch_fp16(self):
    """Benchmark 1 gpu with static batch w/xla and FP16."""
    self._setup()
    FLAGS.num_gpus = 1
    FLAGS.batch_size = self.batch_per_gpu
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_xla_1_gpu_static_batch_fp16')
    FLAGS.static_batch = True
    FLAGS.max_length = 64
    FLAGS.enable_xla = True
    FLAGS.dtype = 'fp16'
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps)

564
565
566
567
568
569
570
571
572
  def benchmark_8_gpu(self):
    """Benchmark 8 gpu."""
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.batch_size = self.batch_per_gpu * 8
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu')
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps)

573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
  def benchmark_8_gpu_fp16(self):
    """Benchmark 8 gpu FP16."""
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = self.batch_per_gpu * 8
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_fp16')
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps)

  def benchmark_xla_8_gpu(self):
    """Benchmark 8 gpu w/xla."""
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.enable_xla = True
    FLAGS.batch_size = self.batch_per_gpu * 8
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu')
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps)

  def benchmark_xla_8_gpu_fp16(self):
    """Benchmark 8 gpu w/xla and FP16."""
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.enable_xla = True
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = self.batch_per_gpu * 8
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_fp16')
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps)

604
  def benchmark_8_gpu_static_batch(self):
605
    """Benchmark 8 gpu with static batch."""
606
    self._setup()
guptapriya's avatar
guptapriya committed
607
    FLAGS.num_gpus = 8
608
609
610
    FLAGS.batch_size = self.batch_per_gpu * 8
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_static_batch')
    FLAGS.static_batch = True
Haoyu Zhang's avatar
Haoyu Zhang committed
611
    FLAGS.max_length = 64
612
613
614
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps)

615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
  def benchmark_8_gpu_static_batch_fp16(self):
    """Benchmark 8 gpu with static batch FP16."""
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = self.batch_per_gpu * 8
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_8_gpu_static_batch_fp16')
    FLAGS.static_batch = True
    FLAGS.max_length = 64
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps)

  def benchmark_xla_8_gpu_static_batch(self):
    """Benchmark 8 gpu with static batch w/xla."""
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.enable_xla = True
    FLAGS.batch_size = self.batch_per_gpu * 8
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_static_batch')
    FLAGS.static_batch = True
    FLAGS.max_length = 64
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps)

  def benchmark_xla_8_gpu_static_batch_fp16(self):
    """Benchmark 8 gpu with static batch w/xla and FP16."""
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.enable_xla = True
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = self.batch_per_gpu * 8
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_xla_8_gpu_static_batch_fp16')
    FLAGS.static_batch = True
    FLAGS.max_length = 64
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps)

Toby Boyd's avatar
Toby Boyd committed
654
655
656
657

class TransformerBaseKerasBenchmarkReal(TransformerKerasBenchmark):
  """Transformer based version real data benchmark tests."""

Hongkun Yu's avatar
Hongkun Yu committed
658
  def __init__(self, output_dir=TMP_DIR, root_data_dir=TMP_DIR, **kwargs):
Toby Boyd's avatar
Toby Boyd committed
659
660
    def_flags = {}
    def_flags['param_set'] = 'base'
Adrian Kuegel's avatar
Adrian Kuegel committed
661
    def_flags['train_steps'] = 50
David Chen's avatar
David Chen committed
662
    def_flags['log_steps'] = 10
Toby Boyd's avatar
Toby Boyd committed
663
664
665
666
667
668
669
670
671

    super(TransformerBaseKerasBenchmarkReal, self).__init__(
        output_dir=output_dir, default_flags=def_flags,
        root_data_dir=root_data_dir, batch_per_gpu=4096)


class TransformerBigKerasBenchmarkReal(TransformerKerasBenchmark):
  """Transformer based version real data benchmark tests."""

Hongkun Yu's avatar
Hongkun Yu committed
672
  def __init__(self, output_dir=TMP_DIR, root_data_dir=TMP_DIR, **kwargs):
Toby Boyd's avatar
Toby Boyd committed
673
674
    def_flags = {}
    def_flags['param_set'] = 'big'
Adrian Kuegel's avatar
Adrian Kuegel committed
675
    def_flags['train_steps'] = 50
David Chen's avatar
David Chen committed
676
    def_flags['log_steps'] = 10
Toby Boyd's avatar
Toby Boyd committed
677
678
679
680

    super(TransformerBigKerasBenchmarkReal, self).__init__(
        output_dir=output_dir, default_flags=def_flags,
        root_data_dir=root_data_dir, batch_per_gpu=3072)
Adrian Kuegel's avatar
Adrian Kuegel committed
681
682
683
684


if __name__ == '__main__':
  tf.test.main()