encoder_test.py 2.29 KB
Newer Older
Frederick Liu's avatar
Frederick Liu committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Hongkun Yu's avatar
Hongkun Yu committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Frederick Liu's avatar
Frederick Liu committed
14

Hongkun Yu's avatar
Hongkun Yu committed
15
16
17
18
19
"""Tests for official.nlp.projects.bigbird.encoder."""

import numpy as np
import tensorflow as tf

20
from official.projects.bigbird import encoder
Hongkun Yu's avatar
Hongkun Yu committed
21
22
23
24
25
26
27
28
29


class BigBirdEncoderTest(tf.test.TestCase):

  def test_encoder(self):
    sequence_length = 1024
    batch_size = 2
    vocab_size = 1024
    network = encoder.BigBirdEncoder(
30
        num_layers=1, vocab_size=1024, max_position_embeddings=4096)
Hongkun Yu's avatar
Hongkun Yu committed
31
32
33
34
35
36
37
38
39
40
41
42
43
    word_id_data = np.random.randint(
        vocab_size, size=(batch_size, sequence_length))
    mask_data = np.random.randint(2, size=(batch_size, sequence_length))
    type_id_data = np.random.randint(2, size=(batch_size, sequence_length))
    outputs = network([word_id_data, mask_data, type_id_data])
    self.assertEqual(outputs["sequence_output"].shape,
                     (batch_size, sequence_length, 768))

  def test_save_restore(self):
    sequence_length = 1024
    batch_size = 2
    vocab_size = 1024
    network = encoder.BigBirdEncoder(
44
        num_layers=1, vocab_size=1024, max_position_embeddings=4096)
Hongkun Yu's avatar
Hongkun Yu committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
    word_id_data = np.random.randint(
        vocab_size, size=(batch_size, sequence_length))
    mask_data = np.random.randint(2, size=(batch_size, sequence_length))
    type_id_data = np.random.randint(2, size=(batch_size, sequence_length))
    inputs = dict(
        input_word_ids=word_id_data,
        input_mask=mask_data,
        input_type_ids=type_id_data)
    ref_outputs = network(inputs)
    model_path = self.get_temp_dir() + "/model"
    network.save(model_path)
    loaded = tf.keras.models.load_model(model_path)
    outputs = loaded(inputs)
    self.assertAllClose(outputs["sequence_output"],
                        ref_outputs["sequence_output"])


if __name__ == "__main__":
  tf.test.main()