pack_optimization.py 10.7 KB
Newer Older
Hongkun Yu's avatar
Hongkun Yu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Pack sequence optimization on accelerators."""
from typing import Dict
import tensorflow as tf
from official.modeling import tf_utils
Hongkun Yu's avatar
Hongkun Yu committed
19
from official.nlp.modeling.layers import rezero_transformer
Hongkun Yu's avatar
Hongkun Yu committed
20
21
from official.nlp.modeling.layers import self_attention_mask
from official.nlp.modeling.layers import transformer_encoder_block
Hongkun Yu's avatar
Hongkun Yu committed
22
from official.nlp.modeling.layers import transformer_scaffold
Hongkun Yu's avatar
Hongkun Yu committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146


def _packing_mask(segment_id, source_segment_id, dtype=tf.float32):
  """Calculates a segment mask for attention.

  Args:
    segment_id: [B, T]
    source_segment_id: [B, S]
    dtype: data type of generated mask.

  Returns:
    segment_mask: [B, T, S]
  """
  if segment_id is None or source_segment_id is None:
    return None
  # Compute [B, T, S] = [B, T, 1] == [B, 1, S]
  return tf.cast(
      tf.equal(
          tf.expand_dims(segment_id, 2), tf.expand_dims(source_segment_id, 1)),
      dtype=dtype)


@tf.keras.utils.register_keras_serializable(package='Text')
class PackBertEmbeddings(tf.keras.layers.Layer):
  """Performs packing tricks for BERT inputs to improve TPU utilization."""

  def __init__(self, pack_sequences: int, **kwargs):
    super().__init__(**kwargs)
    self.pack_sequences = pack_sequences

  def call(self, input_embeddings: tf.Tensor,
           input_mask: tf.Tensor) -> Dict[str, tf.Tensor]:
    batch_size, seq_len, embedding_dim = tf_utils.get_shape_list(
        input_embeddings, expected_rank=3)
    example_ids = None
    reduced_batch_size = batch_size // self.pack_sequences
    packed_seq_len = self.pack_sequences * seq_len
    packed_embeddings = tf.reshape(
        input_embeddings, [reduced_batch_size, packed_seq_len, embedding_dim])
    input_mask = tf.reshape(input_mask, [reduced_batch_size, packed_seq_len])
    example_ids = 1 + tf.range(self.pack_sequences)
    # Shape: [batch_size, seq_len, pack_sequences].
    example_ids = tf.tile(example_ids[None, :, None],
                          [reduced_batch_size, 1, seq_len])
    example_ids = tf.reshape(example_ids, [reduced_batch_size, packed_seq_len])
    example_ids = tf.where(
        tf.math.equal(input_mask, 0), tf.zeros_like(example_ids), example_ids)
    packing_mask = _packing_mask(example_ids, example_ids, dtype=tf.bool)

    attention_mask = self_attention_mask.get_mask(
        packed_embeddings, input_mask, dtype=tf.bool)

    combined_attention_mask = tf.cast(
        tf.math.logical_and(attention_mask, packing_mask), tf.float32)

    return dict(
        packed_embeddings=packed_embeddings,
        combined_attention_mask=combined_attention_mask)


@tf.keras.utils.register_keras_serializable(package='Text')
class StridedTransformerEncoderBlock(
    transformer_encoder_block.TransformerEncoderBlock):
  """Transformer layer for packing optimization to stride over inputs."""

  def __init__(self, *args, **kwargs):
    super().__init__(*args, **kwargs)
    if self._output_range is not None:
      raise ValueError('StridedTransformerEncoderBlock does not '
                       'support `output_range` argument.')

  def call(self, inputs, stride: tf.Tensor):
    if isinstance(inputs, (list, tuple)):
      if len(inputs) == 2:
        input_tensor, attention_mask = inputs
        key_value = None
      elif len(inputs) == 3:
        input_tensor, key_value, attention_mask = inputs
      else:
        raise ValueError('Unexpected inputs to %s with length at %d' %
                         (self.__class__, len(inputs)))
    else:
      input_tensor, key_value, attention_mask = (inputs, None, None)

    if self._norm_first:
      source_tensor = input_tensor[:, ::stride, :]
      input_tensor = self._attention_layer_norm(input_tensor)
      if key_value is not None:
        key_value = self._attention_layer_norm_kv(key_value)
    target_tensor = input_tensor[:, ::stride, :]
    if attention_mask is not None:
      attention_mask = attention_mask[:, ::stride, :]

    if key_value is None:
      key_value = input_tensor
    attention_output = self._attention_layer(
        query=target_tensor, value=key_value, attention_mask=attention_mask)
    attention_output = self._attention_dropout(attention_output)

    if self._norm_first:
      # Important to not combine `self._norm_first` and
      # `self._use_query_residual` into one if clause because else is only for
      # `_norm_first == False`.
      if self._use_query_residual:
        attention_output = source_tensor + attention_output
    else:
      if self._use_query_residual:
        attention_output = target_tensor + attention_output
      attention_output = self._attention_layer_norm(attention_output)

    if self._norm_first:
      source_attention_output = attention_output
      attention_output = self._output_layer_norm(attention_output)
    inner_output = self._intermediate_dense(attention_output)
    inner_output = self._intermediate_activation_layer(inner_output)
    inner_output = self._inner_dropout_layer(inner_output)
    layer_output = self._output_dense(inner_output)
    layer_output = self._output_dropout(layer_output)

    if self._norm_first:
      return source_attention_output + layer_output

    layer_output = tf.cast(layer_output, tf.float32)
    return self._output_layer_norm(layer_output + attention_output)
Hongkun Yu's avatar
Hongkun Yu committed
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204


@tf.keras.utils.register_keras_serializable(package='Text')
class StridedReZeroTransformer(rezero_transformer.ReZeroTransformer):
  """ReZeroTransformer for packing optimization to stride over inputs."""

  def __init__(self, *args, **kwargs):
    super().__init__(*args, **kwargs)
    if self._output_range is not None:
      raise ValueError(f'{self.__class__} does not '
                       'support `output_range` argument.')

  def call(self, inputs, stride: tf.Tensor):
    if isinstance(inputs, (list, tuple)):
      if len(inputs) == 2:
        input_tensor, attention_mask = inputs
        key_value = None
      elif len(inputs) == 3:
        input_tensor, key_value, attention_mask = inputs
      else:
        raise ValueError(f'Unexpected inputs to {self.__class__} with '
                         f'length at {len(inputs)}.')
    else:
      input_tensor, key_value, attention_mask = (inputs, None, None)

    target_tensor = input_tensor[:, ::stride, :]
    if attention_mask is not None:
      attention_mask = attention_mask[:, ::stride, :]

    if key_value is None:
      key_value = input_tensor

    attention_output = self._attention_layer(
        query=target_tensor, value=key_value, attention_mask=attention_mask)
    attention_output = self._attention_dropout(attention_output)
    attention_output = target_tensor + self._rezero_a * attention_output
    if self._use_layer_norm:
      attention_output = self._attention_layer_norm(attention_output)
    else:
      attention_output = tf.cast(attention_output, tf.float32)

    intermediate_output = self._intermediate_dense(attention_output)
    intermediate_output = self._inner_activation_layer(intermediate_output)
    layer_output = self._output_dense(intermediate_output)
    layer_output = self._output_dropout(layer_output)
    layer_output = attention_output + tf.cast(self._rezero_a_ffn * layer_output,
                                              tf.float32)
    if self._use_layer_norm:
      layer_output = self._output_layer_norm(layer_output)

    return layer_output


@tf.keras.utils.register_keras_serializable(package='Text')
class StridedTransformerScaffold(transformer_scaffold.TransformerScaffold):
  """TransformerScaffold for packing optimization to stride over inputs."""

  def call(self, inputs, stride: tf.Tensor, training=None):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
205
206
207
208
209
210
211
212
213
    if isinstance(inputs, (list, tuple)):
      if len(inputs) == 2:
        input_tensor, attention_mask = inputs
        key_value = None
      elif len(inputs) == 3:
        input_tensor, key_value, attention_mask = inputs
      else:
        raise ValueError('Unexpected inputs to %s with length at %d' %
                         (self.__class__, len(inputs)))
Hongkun Yu's avatar
Hongkun Yu committed
214
    else:
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
215
216
217
218
      input_tensor, key_value, attention_mask = (inputs, None, None)

    if key_value is None:
      key_value = input_tensor
Hongkun Yu's avatar
Hongkun Yu committed
219
220
221
222
223
224
225
226
227

    if self._norm_first:
      source_tensor = input_tensor[:, ::stride, :]
      input_tensor = self._attention_layer_norm(input_tensor, training=training)
    if attention_mask is not None:
      attention_mask = attention_mask[:, ::stride, :]
    target_tensor = input_tensor[:, ::stride, :]

    attention_output = self._attention_layer(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
228
        query=target_tensor, value=key_value, attention_mask=attention_mask,
Hongkun Yu's avatar
Hongkun Yu committed
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
        training=training)
    attention_output = self._attention_dropout(attention_output,
                                               training=training)

    if self._norm_first:
      attention_output = source_tensor + attention_output
    else:
      attention_output = self._attention_layer_norm(target_tensor +
                                                    attention_output,
                                                    training=training)
    if self._norm_first:
      source_attention_output = attention_output
      attention_output = self._output_layer_norm(attention_output,
                                                 training=training)

    if self._feedforward_block is None:
      intermediate_output = self._intermediate_dense(attention_output)
      intermediate_output = self._intermediate_activation_layer(
          intermediate_output)
      layer_output = self._output_dense(intermediate_output, training=training)
      layer_output = self._output_dropout(layer_output, training=training)
      layer_output = tf.cast(layer_output, tf.float32)
      if self._norm_first:
        layer_output = source_attention_output + layer_output
      else:
        layer_output = self._output_layer_norm(layer_output + attention_output,
                                               training=training)
    else:
      if self._norm_first:
        # if norm_first, assume the feedforward block will not apply layer norm
        layer_output = self._feedforward_block(attention_output,
                                               training=training)
        layer_output += source_attention_output
      else:
        # if not norm_first, assume that the feedforwad does apply layer norm
        layer_output = self._feedforward_block(attention_output,
                                               training=training)

    return layer_output