classifier_data_lib.py 38.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""BERT library to process data for classification task."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import collections
import csv
23
import importlib
24
25
26
27
import os

from absl import logging
import tensorflow as tf
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
28
import tensorflow_datasets as tfds
29

30
from official.nlp.bert import tokenization
31
32
33
34
35


class InputExample(object):
  """A single training/test example for simple sequence classification."""

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
36
37
38
39
40
41
42
  def __init__(self,
               guid,
               text_a,
               text_b=None,
               label=None,
               weight=None,
               int_iden=None):
43
44
45
46
47
48
49
50
51
52
    """Constructs a InputExample.

    Args:
      guid: Unique id for the example.
      text_a: string. The untokenized text of the first sequence. For single
        sequence tasks, only this sequence must be specified.
      text_b: (Optional) string. The untokenized text of the second sequence.
        Only must be specified for sequence pair tasks.
      label: (Optional) string. The label of the example. This should be
        specified for train and dev examples, but not for test examples.
Maxim Neumann's avatar
Maxim Neumann committed
53
54
      weight: (Optional) float. The weight of the example to be used during
        training.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
55
56
      int_iden: (Optional) int. The int identification number of example in the
        corpus.
57
58
59
60
61
    """
    self.guid = guid
    self.text_a = text_a
    self.text_b = text_b
    self.label = label
Maxim Neumann's avatar
Maxim Neumann committed
62
    self.weight = weight
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
63
    self.int_iden = int_iden
64
65
66
67
68
69
70
71
72
73


class InputFeatures(object):
  """A single set of features of data."""

  def __init__(self,
               input_ids,
               input_mask,
               segment_ids,
               label_id,
Maxim Neumann's avatar
Maxim Neumann committed
74
               is_real_example=True,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
75
76
               weight=None,
               int_iden=None):
77
78
79
80
81
    self.input_ids = input_ids
    self.input_mask = input_mask
    self.segment_ids = segment_ids
    self.label_id = label_id
    self.is_real_example = is_real_example
Maxim Neumann's avatar
Maxim Neumann committed
82
    self.weight = weight
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
83
    self.int_iden = int_iden
84
85
86
87
88


class DataProcessor(object):
  """Base class for data converters for sequence classification data sets."""

89
90
91
  def __init__(self, process_text_fn=tokenization.convert_to_unicode):
    self.process_text_fn = process_text_fn

92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
  def get_train_examples(self, data_dir):
    """Gets a collection of `InputExample`s for the train set."""
    raise NotImplementedError()

  def get_dev_examples(self, data_dir):
    """Gets a collection of `InputExample`s for the dev set."""
    raise NotImplementedError()

  def get_test_examples(self, data_dir):
    """Gets a collection of `InputExample`s for prediction."""
    raise NotImplementedError()

  def get_labels(self):
    """Gets the list of labels for this data set."""
    raise NotImplementedError()

  @staticmethod
  def get_processor_name():
    """Gets the string identifier of the processor."""
    raise NotImplementedError()

  @classmethod
  def _read_tsv(cls, input_file, quotechar=None):
    """Reads a tab separated value file."""
    with tf.io.gfile.GFile(input_file, "r") as f:
      reader = csv.reader(f, delimiter="\t", quotechar=quotechar)
      lines = []
      for line in reader:
        lines.append(line)
      return lines


class XnliProcessor(DataProcessor):
  """Processor for the XNLI data set."""
Tianqi Liu's avatar
Tianqi Liu committed
126
127
128
129
  supported_languages = [
      "ar", "bg", "de", "el", "en", "es", "fr", "hi", "ru", "sw", "th", "tr",
      "ur", "vi", "zh"
  ]
130

Tianqi Liu's avatar
Tianqi Liu committed
131
132
133
  def __init__(self,
               language="en",
               process_text_fn=tokenization.convert_to_unicode):
134
    super(XnliProcessor, self).__init__(process_text_fn)
Tianqi Liu's avatar
Tianqi Liu committed
135
136
137
138
139
140
    if language == "all":
      self.languages = XnliProcessor.supported_languages
    elif language not in XnliProcessor.supported_languages:
      raise ValueError("language %s is not supported for XNLI task." % language)
    else:
      self.languages = [language]
141
142
143

  def get_train_examples(self, data_dir):
    """See base class."""
Tianqi Liu's avatar
Tianqi Liu committed
144
145
    lines = []
    for language in self.languages:
Tianqi Liu's avatar
Tianqi Liu committed
146
      # Skips the header.
Tianqi Liu's avatar
Tianqi Liu committed
147
148
149
      lines.extend(
          self._read_tsv(
              os.path.join(data_dir, "multinli",
Tianqi Liu's avatar
Tianqi Liu committed
150
                           "multinli.train.%s.tsv" % language))[1:])
Tianqi Liu's avatar
Tianqi Liu committed
151

152
153
    examples = []
    for (i, line) in enumerate(lines):
Tianqi Liu's avatar
Tianqi Liu committed
154
      guid = "train-%d" % i
155
156
157
158
159
      text_a = self.process_text_fn(line[0])
      text_b = self.process_text_fn(line[1])
      label = self.process_text_fn(line[2])
      if label == self.process_text_fn("contradictory"):
        label = self.process_text_fn("contradiction")
160
161
162
163
164
165
166
167
168
169
170
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples

  def get_dev_examples(self, data_dir):
    """See base class."""
    lines = self._read_tsv(os.path.join(data_dir, "xnli.dev.tsv"))
    examples = []
    for (i, line) in enumerate(lines):
      if i == 0:
        continue
Tianqi Liu's avatar
Tianqi Liu committed
171
      guid = "dev-%d" % i
172
173
174
      text_a = self.process_text_fn(line[6])
      text_b = self.process_text_fn(line[7])
      label = self.process_text_fn(line[1])
175
176
177
178
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples

Tianqi Liu's avatar
Tianqi Liu committed
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
  def get_test_examples(self, data_dir):
    """See base class."""
    lines = self._read_tsv(os.path.join(data_dir, "xnli.test.tsv"))
    examples_by_lang = {k: [] for k in XnliProcessor.supported_languages}
    for (i, line) in enumerate(lines):
      if i == 0:
        continue
      guid = "test-%d" % i
      language = self.process_text_fn(line[0])
      text_a = self.process_text_fn(line[6])
      text_b = self.process_text_fn(line[7])
      label = self.process_text_fn(line[1])
      examples_by_lang[language].append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples_by_lang

195
196
197
198
199
200
201
202
203
204
  def get_labels(self):
    """See base class."""
    return ["contradiction", "entailment", "neutral"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "XNLI"


Tianqi Liu's avatar
Tianqi Liu committed
205
206
class XtremeXnliProcessor(DataProcessor):
  """Processor for the XTREME XNLI data set."""
Tianqi Liu's avatar
Tianqi Liu committed
207
  supported_languages = [
Tianqi Liu's avatar
Tianqi Liu committed
208
209
      "ar", "bg", "de", "el", "en", "es", "fr", "hi", "ru", "sw", "th", "tr",
      "ur", "vi", "zh"
Tianqi Liu's avatar
Tianqi Liu committed
210
211
  ]

Tianqi Liu's avatar
Tianqi Liu committed
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
  def get_train_examples(self, data_dir):
    """See base class."""
    lines = self._read_tsv(os.path.join(data_dir, "train-en.tsv"))

    examples = []
    for (i, line) in enumerate(lines):
      guid = "train-%d" % i
      text_a = self.process_text_fn(line[0])
      text_b = self.process_text_fn(line[1])
      label = self.process_text_fn(line[2])
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples

  def get_dev_examples(self, data_dir):
    """See base class."""
    lines = self._read_tsv(os.path.join(data_dir, "dev-en.tsv"))
    examples = []
    for (i, line) in enumerate(lines):
      guid = "dev-%d" % i
      text_a = self.process_text_fn(line[0])
      text_b = self.process_text_fn(line[1])
      label = self.process_text_fn(line[2])
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples

  def get_test_examples(self, data_dir):
    """See base class."""
    examples_by_lang = {k: [] for k in self.supported_languages}
    for lang in self.supported_languages:
      lines = self._read_tsv(os.path.join(data_dir, f"test-{lang}.tsv"))
      for (i, line) in enumerate(lines):
        guid = f"test-{i}"
        text_a = self.process_text_fn(line[0])
        text_b = self.process_text_fn(line[1])
Chen Chen's avatar
Chen Chen committed
248
        label = "contradiction"
Tianqi Liu's avatar
Tianqi Liu committed
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
        examples_by_lang[lang].append(
            InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples_by_lang

  def get_labels(self):
    """See base class."""
    return ["contradiction", "entailment", "neutral"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "XTREME-XNLI"


class PawsxProcessor(DataProcessor):
  """Processor for the PAWS-X data set."""
  supported_languages = ["de", "en", "es", "fr", "ja", "ko", "zh"]

Tianqi Liu's avatar
Tianqi Liu committed
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
  def __init__(self,
               language="en",
               process_text_fn=tokenization.convert_to_unicode):
    super(PawsxProcessor, self).__init__(process_text_fn)
    if language == "all":
      self.languages = PawsxProcessor.supported_languages
    elif language not in PawsxProcessor.supported_languages:
      raise ValueError("language %s is not supported for PAWS-X task." %
                       language)
    else:
      self.languages = [language]

  def get_train_examples(self, data_dir):
    """See base class."""
    lines = []
    for language in self.languages:
      if language == "en":
        train_tsv = "train.tsv"
      else:
        train_tsv = "translated_train.tsv"
      # Skips the header.
      lines.extend(
Tianqi Liu's avatar
Tianqi Liu committed
289
          self._read_tsv(os.path.join(data_dir, language, train_tsv))[1:])
Tianqi Liu's avatar
Tianqi Liu committed
290
291
292
293
294
295
296
297
298
299
300
301
302
303

    examples = []
    for (i, line) in enumerate(lines):
      guid = "train-%d" % i
      text_a = self.process_text_fn(line[1])
      text_b = self.process_text_fn(line[2])
      label = self.process_text_fn(line[3])
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples

  def get_dev_examples(self, data_dir):
    """See base class."""
    lines = []
Tianqi Liu's avatar
Tianqi Liu committed
304
305
    for lang in PawsxProcessor.supported_languages:
      lines.extend(self._read_tsv(os.path.join(data_dir, f"dev-{lang}.tsv")))
Tianqi Liu's avatar
Tianqi Liu committed
306
307
308
309

    examples = []
    for (i, line) in enumerate(lines):
      guid = "dev-%d" % i
Tianqi Liu's avatar
Tianqi Liu committed
310
311
312
      text_a = self.process_text_fn(line[0])
      text_b = self.process_text_fn(line[1])
      label = self.process_text_fn(line[2])
Tianqi Liu's avatar
Tianqi Liu committed
313
314
315
316
317
318
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples

  def get_test_examples(self, data_dir):
    """See base class."""
Tianqi Liu's avatar
Tianqi Liu committed
319
320
321
    examples_by_lang = {k: [] for k in self.supported_languages}
    for lang in self.supported_languages:
      lines = self._read_tsv(os.path.join(data_dir, f"test-{lang}.tsv"))
Tianqi Liu's avatar
Tianqi Liu committed
322
323
      for (i, line) in enumerate(lines):
        guid = "test-%d" % i
Tianqi Liu's avatar
Tianqi Liu committed
324
325
326
327
        text_a = self.process_text_fn(line[0])
        text_b = self.process_text_fn(line[1])
        label = self.process_text_fn(line[2])
        examples_by_lang[lang].append(
Tianqi Liu's avatar
Tianqi Liu committed
328
329
330
331
332
333
334
335
336
337
            InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples_by_lang

  def get_labels(self):
    """See base class."""
    return ["0", "1"]

  @staticmethod
  def get_processor_name():
    """See base class."""
Tianqi Liu's avatar
Tianqi Liu committed
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
    return "XTREME-PAWS-X"


class XtremePawsxProcessor(DataProcessor):
  """Processor for the XTREME PAWS-X data set."""
  supported_languages = ["de", "en", "es", "fr", "ja", "ko", "zh"]

  def get_train_examples(self, data_dir):
    """See base class."""
    lines = self._read_tsv(os.path.join(data_dir, "train-en.tsv"))
    examples = []
    for (i, line) in enumerate(lines):
      guid = "train-%d" % i
      text_a = self.process_text_fn(line[0])
      text_b = self.process_text_fn(line[1])
      label = self.process_text_fn(line[2])
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples

  def get_dev_examples(self, data_dir):
    """See base class."""
Chen Chen's avatar
Chen Chen committed
360
    lines = self._read_tsv(os.path.join(data_dir, "dev-en.tsv"))
Tianqi Liu's avatar
Tianqi Liu committed
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380

    examples = []
    for (i, line) in enumerate(lines):
      guid = "dev-%d" % i
      text_a = self.process_text_fn(line[0])
      text_b = self.process_text_fn(line[1])
      label = self.process_text_fn(line[2])
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples

  def get_test_examples(self, data_dir):
    """See base class."""
    examples_by_lang = {k: [] for k in self.supported_languages}
    for lang in self.supported_languages:
      lines = self._read_tsv(os.path.join(data_dir, f"test-{lang}.tsv"))
      for (i, line) in enumerate(lines):
        guid = "test-%d" % i
        text_a = self.process_text_fn(line[0])
        text_b = self.process_text_fn(line[1])
Chen Chen's avatar
Chen Chen committed
381
        label = "0"
Tianqi Liu's avatar
Tianqi Liu committed
382
383
384
385
386
387
388
389
390
391
392
393
        examples_by_lang[lang].append(
            InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples_by_lang

  def get_labels(self):
    """See base class."""
    return ["0", "1"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "XTREME-PAWS-X"
Tianqi Liu's avatar
Tianqi Liu committed
394
395


396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
class MnliProcessor(DataProcessor):
  """Processor for the MultiNLI data set (GLUE version)."""

  def get_train_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

  def get_dev_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "dev_matched.tsv")),
        "dev_matched")

  def get_test_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "test_matched.tsv")), "test")

  def get_labels(self):
    """See base class."""
    return ["contradiction", "entailment", "neutral"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "MNLI"

  def _create_examples(self, lines, set_type):
    """Creates examples for the training and dev sets."""
    examples = []
    for (i, line) in enumerate(lines):
      if i == 0:
        continue
430
431
432
      guid = "%s-%s" % (set_type, self.process_text_fn(line[0]))
      text_a = self.process_text_fn(line[8])
      text_b = self.process_text_fn(line[9])
433
434
435
      if set_type == "test":
        label = "contradiction"
      else:
436
        label = self.process_text_fn(line[-1])
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples


class MrpcProcessor(DataProcessor):
  """Processor for the MRPC data set (GLUE version)."""

  def get_train_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

  def get_dev_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

  def get_test_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")

  def get_labels(self):
    """See base class."""
    return ["0", "1"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "MRPC"

  def _create_examples(self, lines, set_type):
    """Creates examples for the training and dev sets."""
    examples = []
    for (i, line) in enumerate(lines):
      if i == 0:
        continue
      guid = "%s-%s" % (set_type, i)
476
477
      text_a = self.process_text_fn(line[3])
      text_b = self.process_text_fn(line[4])
478
479
480
      if set_type == "test":
        label = "0"
      else:
481
        label = self.process_text_fn(line[0])
482
483
484
485
486
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples


Saurabh Saxena's avatar
Saurabh Saxena committed
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
class QqpProcessor(DataProcessor):
  """Processor for the QQP data set (GLUE version)."""

  def get_train_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

  def get_dev_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

  def get_test_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")

  def get_labels(self):
    """See base class."""
    return ["0", "1"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "QQP"

  def _create_examples(self, lines, set_type):
    """Creates examples for the training and dev sets."""
    examples = []
    for (i, line) in enumerate(lines):
      if i == 0:
        continue
      guid = "%s-%s" % (set_type, line[0])
      try:
        text_a = line[3]
        text_b = line[4]
        label = line[5]
      except IndexError:
        continue
Tianqi Liu's avatar
Tianqi Liu committed
527
528
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
Saurabh Saxena's avatar
Saurabh Saxena committed
529
530
531
    return examples


532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
class ColaProcessor(DataProcessor):
  """Processor for the CoLA data set (GLUE version)."""

  def get_train_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

  def get_dev_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

  def get_test_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")

  def get_labels(self):
    """See base class."""
    return ["0", "1"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "COLA"

  def _create_examples(self, lines, set_type):
    """Creates examples for the training and dev sets."""
    examples = []
    for (i, line) in enumerate(lines):
      # Only the test set has a header
      if set_type == "test" and i == 0:
        continue
      guid = "%s-%s" % (set_type, i)
      if set_type == "test":
568
        text_a = self.process_text_fn(line[1])
569
570
        label = "0"
      else:
571
572
        text_a = self.process_text_fn(line[3])
        label = self.process_text_fn(line[1])
573
574
575
576
577
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=None, label=label))
    return examples


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
class RteProcessor(DataProcessor):
  """Processor for the RTE data set (GLUE version)."""

  def get_train_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

  def get_dev_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

  def get_test_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")

  def get_labels(self):
    """See base class."""
    # All datasets are converted to 2-class split, where for 3-class datasets we
    # collapse neutral and contradiction into not_entailment.
    return ["entailment", "not_entailment"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "RTE"

  def _create_examples(self, lines, set_type):
    """Creates examples for the training and dev sets."""
    examples = []
    for i, line in enumerate(lines):
      if i == 0:
        continue
      guid = "%s-%s" % (set_type, i)
614
615
      text_a = tokenization.convert_to_unicode(line[1])
      text_b = tokenization.convert_to_unicode(line[2])
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
616
617
618
619
620
621
622
623
624
      if set_type == "test":
        label = "entailment"
      else:
        label = tokenization.convert_to_unicode(line[3])
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples


625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
class SstProcessor(DataProcessor):
  """Processor for the SST-2 data set (GLUE version)."""

  def get_train_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

  def get_dev_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

  def get_test_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")

  def get_labels(self):
    """See base class."""
    return ["0", "1"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "SST-2"

  def _create_examples(self, lines, set_type):
    """Creates examples for the training and dev sets."""
    examples = []
    for (i, line) in enumerate(lines):
      if i == 0:
        continue
      guid = "%s-%s" % (set_type, i)
      if set_type == "test":
        text_a = tokenization.convert_to_unicode(line[1])
        label = "0"
      else:
        text_a = tokenization.convert_to_unicode(line[0])
        label = tokenization.convert_to_unicode(line[1])
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=None, label=label))
    return examples


class QnliProcessor(DataProcessor):
  """Processor for the QNLI data set (GLUE version)."""

  def get_train_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

  def get_dev_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev_matched")

  def get_test_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")

  def get_labels(self):
    """See base class."""
    return ["entailment", "not_entailment"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "QNLI"

  def _create_examples(self, lines, set_type):
    """Creates examples for the training and dev sets."""
    examples = []
    for (i, line) in enumerate(lines):
      if i == 0:
        continue
      guid = "%s-%s" % (set_type, 1)
      if set_type == "test":
        text_a = tokenization.convert_to_unicode(line[1])
        text_b = tokenization.convert_to_unicode(line[2])
        label = "entailment"
      else:
        text_a = tokenization.convert_to_unicode(line[1])
        text_b = tokenization.convert_to_unicode(line[2])
        label = tokenization.convert_to_unicode(line[-1])
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
717
class TfdsProcessor(DataProcessor):
Maxim Neumann's avatar
Maxim Neumann committed
718
  """Processor for generic text classification and regression TFDS data set.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
719
720
721
722
723
724
725
726
727
728

  The TFDS parameters are expected to be provided in the tfds_params string, in
  a comma-separated list of parameter assignments.
  Examples:
    tfds_params="dataset=scicite,text_key=string"
    tfds_params="dataset=imdb_reviews,test_split=,dev_split=test"
    tfds_params="dataset=glue/cola,text_key=sentence"
    tfds_params="dataset=glue/sst2,text_key=sentence"
    tfds_params="dataset=glue/qnli,text_key=question,text_b_key=sentence"
    tfds_params="dataset=glue/mrpc,text_key=sentence1,text_b_key=sentence2"
Maxim Neumann's avatar
Maxim Neumann committed
729
730
    tfds_params="dataset=glue/stsb,text_key=sentence1,text_b_key=sentence2,"
                "is_regression=true,label_type=float"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
731
732
733
734
  Possible parameters (please refer to the documentation of Tensorflow Datasets
  (TFDS) for the meaning of individual parameters):
    dataset: Required dataset name (potentially with subset and version number).
    data_dir: Optional TFDS source root directory.
735
    module_import: Optional Dataset module to import.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
736
737
738
739
740
741
742
743
744
    train_split: Name of the train split (defaults to `train`).
    dev_split: Name of the dev split (defaults to `validation`).
    test_split: Name of the test split (defaults to `test`).
    text_key: Key of the text_a feature (defaults to `text`).
    text_b_key: Key of the second text feature if available.
    label_key: Key of the label feature (defaults to `label`).
    test_text_key: Key of the text feature to use in test set.
    test_text_b_key: Key of the second text feature to use in test set.
    test_label: String to be used as the label for all test examples.
Maxim Neumann's avatar
Maxim Neumann committed
745
    label_type: Type of the label key (defaults to `int`).
Maxim Neumann's avatar
Maxim Neumann committed
746
    weight_key: Key of the float sample weight (is not used if not provided).
Maxim Neumann's avatar
Maxim Neumann committed
747
    is_regression: Whether the task is a regression problem (defaults to False).
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
748
749
  """

Tianqi Liu's avatar
Tianqi Liu committed
750
751
  def __init__(self,
               tfds_params,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
752
753
754
               process_text_fn=tokenization.convert_to_unicode):
    super(TfdsProcessor, self).__init__(process_text_fn)
    self._process_tfds_params_str(tfds_params)
755
756
757
    if self.module_import:
      importlib.import_module(self.module_import)

Tianqi Liu's avatar
Tianqi Liu committed
758
759
    self.dataset, info = tfds.load(
        self.dataset_name, data_dir=self.data_dir, with_info=True)
Maxim Neumann's avatar
Maxim Neumann committed
760
761
762
763
    if self.is_regression:
      self._labels = None
    else:
      self._labels = list(range(info.features[self.label_key].num_classes))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
764
765
766

  def _process_tfds_params_str(self, params_str):
    """Extracts TFDS parameters from a comma-separated assignements string."""
Maxim Neumann's avatar
Maxim Neumann committed
767
768
769
    dtype_map = {"int": int, "float": float}
    cast_str_to_bool = lambda s: s.lower() not in ["false", "0"]

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
770
771
772
773
    tuples = [x.split("=") for x in params_str.split(",")]
    d = {k.strip(): v.strip() for k, v in tuples}
    self.dataset_name = d["dataset"]  # Required.
    self.data_dir = d.get("data_dir", None)
774
    self.module_import = d.get("module_import", None)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
775
776
777
778
779
780
781
782
783
    self.train_split = d.get("train_split", "train")
    self.dev_split = d.get("dev_split", "validation")
    self.test_split = d.get("test_split", "test")
    self.text_key = d.get("text_key", "text")
    self.text_b_key = d.get("text_b_key", None)
    self.label_key = d.get("label_key", "label")
    self.test_text_key = d.get("test_text_key", self.text_key)
    self.test_text_b_key = d.get("test_text_b_key", self.text_b_key)
    self.test_label = d.get("test_label", "test_example")
Maxim Neumann's avatar
Maxim Neumann committed
784
785
    self.label_type = dtype_map[d.get("label_type", "int")]
    self.is_regression = cast_str_to_bool(d.get("is_regression", "False"))
Maxim Neumann's avatar
Maxim Neumann committed
786
    self.weight_key = d.get("weight_key", None)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811

  def get_train_examples(self, data_dir):
    assert data_dir is None
    return self._create_examples(self.train_split, "train")

  def get_dev_examples(self, data_dir):
    assert data_dir is None
    return self._create_examples(self.dev_split, "dev")

  def get_test_examples(self, data_dir):
    assert data_dir is None
    return self._create_examples(self.test_split, "test")

  def get_labels(self):
    return self._labels

  def get_processor_name(self):
    return "TFDS_" + self.dataset_name

  def _create_examples(self, split_name, set_type):
    """Creates examples for the training and dev sets."""
    if split_name not in self.dataset:
      raise ValueError("Split {} not available.".format(split_name))
    dataset = self.dataset[split_name].as_numpy_iterator()
    examples = []
Maxim Neumann's avatar
Maxim Neumann committed
812
    text_b, weight = None, None
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
813
814
815
816
817
818
819
820
821
822
823
    for i, example in enumerate(dataset):
      guid = "%s-%s" % (set_type, i)
      if set_type == "test":
        text_a = self.process_text_fn(example[self.test_text_key])
        if self.test_text_b_key:
          text_b = self.process_text_fn(example[self.test_text_b_key])
        label = self.test_label
      else:
        text_a = self.process_text_fn(example[self.text_key])
        if self.text_b_key:
          text_b = self.process_text_fn(example[self.text_b_key])
Maxim Neumann's avatar
Maxim Neumann committed
824
        label = self.label_type(example[self.label_key])
Maxim Neumann's avatar
Maxim Neumann committed
825
826
      if self.weight_key:
        weight = float(example[self.weight_key])
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
827
      examples.append(
Tianqi Liu's avatar
Tianqi Liu committed
828
829
830
831
832
833
          InputExample(
              guid=guid,
              text_a=text_a,
              text_b=text_b,
              label=label,
              weight=weight))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
834
835
836
    return examples


837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
class WnliProcessor(DataProcessor):
  """Processor for the WNLI data set (GLUE version)."""

  def get_train_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

  def get_dev_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

  def get_test_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")

  def get_labels(self):
    """See base class."""
    return ["0", "1"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "WNLI"

  def _create_examples(self, lines, set_type):
    """Creates examples for the training and dev sets."""
    examples = []
    for i, line in enumerate(lines):
      if i == 0:
        continue
      guid = "%s-%s" % (set_type, i)
      text_a = tokenization.convert_to_unicode(line[1])
      text_b = tokenization.convert_to_unicode(line[2])
      if set_type == "test":
        label = "0"
      else:
        label = tokenization.convert_to_unicode(line[3])
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples


882
883
884
885
def convert_single_example(ex_index, example, label_list, max_seq_length,
                           tokenizer):
  """Converts a single `InputExample` into a single `InputFeatures`."""
  label_map = {}
Maxim Neumann's avatar
Maxim Neumann committed
886
887
888
  if label_list:
    for (i, label) in enumerate(label_list):
      label_map[label] = i
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955

  tokens_a = tokenizer.tokenize(example.text_a)
  tokens_b = None
  if example.text_b:
    tokens_b = tokenizer.tokenize(example.text_b)

  if tokens_b:
    # Modifies `tokens_a` and `tokens_b` in place so that the total
    # length is less than the specified length.
    # Account for [CLS], [SEP], [SEP] with "- 3"
    _truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
  else:
    # Account for [CLS] and [SEP] with "- 2"
    if len(tokens_a) > max_seq_length - 2:
      tokens_a = tokens_a[0:(max_seq_length - 2)]

  # The convention in BERT is:
  # (a) For sequence pairs:
  #  tokens:   [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
  #  type_ids: 0     0  0    0    0     0       0 0     1  1  1  1   1 1
  # (b) For single sequences:
  #  tokens:   [CLS] the dog is hairy . [SEP]
  #  type_ids: 0     0   0   0  0     0 0
  #
  # Where "type_ids" are used to indicate whether this is the first
  # sequence or the second sequence. The embedding vectors for `type=0` and
  # `type=1` were learned during pre-training and are added to the wordpiece
  # embedding vector (and position vector). This is not *strictly* necessary
  # since the [SEP] token unambiguously separates the sequences, but it makes
  # it easier for the model to learn the concept of sequences.
  #
  # For classification tasks, the first vector (corresponding to [CLS]) is
  # used as the "sentence vector". Note that this only makes sense because
  # the entire model is fine-tuned.
  tokens = []
  segment_ids = []
  tokens.append("[CLS]")
  segment_ids.append(0)
  for token in tokens_a:
    tokens.append(token)
    segment_ids.append(0)
  tokens.append("[SEP]")
  segment_ids.append(0)

  if tokens_b:
    for token in tokens_b:
      tokens.append(token)
      segment_ids.append(1)
    tokens.append("[SEP]")
    segment_ids.append(1)

  input_ids = tokenizer.convert_tokens_to_ids(tokens)

  # The mask has 1 for real tokens and 0 for padding tokens. Only real
  # tokens are attended to.
  input_mask = [1] * len(input_ids)

  # Zero-pad up to the sequence length.
  while len(input_ids) < max_seq_length:
    input_ids.append(0)
    input_mask.append(0)
    segment_ids.append(0)

  assert len(input_ids) == max_seq_length
  assert len(input_mask) == max_seq_length
  assert len(segment_ids) == max_seq_length

Maxim Neumann's avatar
Maxim Neumann committed
956
  label_id = label_map[example.label] if label_map else example.label
957
958
  if ex_index < 5:
    logging.info("*** Example ***")
959
960
961
962
963
964
    logging.info("guid: %s", (example.guid))
    logging.info("tokens: %s",
                 " ".join([tokenization.printable_text(x) for x in tokens]))
    logging.info("input_ids: %s", " ".join([str(x) for x in input_ids]))
    logging.info("input_mask: %s", " ".join([str(x) for x in input_mask]))
    logging.info("segment_ids: %s", " ".join([str(x) for x in segment_ids]))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
965
    logging.info("label: %s (id = %s)", example.label, str(label_id))
Maxim Neumann's avatar
Maxim Neumann committed
966
    logging.info("weight: %s", example.weight)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
967
    logging.info("int_iden: %s", str(example.int_iden))
968
969
970
971
972
973

  feature = InputFeatures(
      input_ids=input_ids,
      input_mask=input_mask,
      segment_ids=segment_ids,
      label_id=label_id,
Maxim Neumann's avatar
Maxim Neumann committed
974
      is_real_example=True,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
975
976
977
      weight=example.weight,
      int_iden=example.int_iden)

978
979
980
  return feature


Tianqi Liu's avatar
Tianqi Liu committed
981
982
983
984
985
986
def file_based_convert_examples_to_features(examples,
                                            label_list,
                                            max_seq_length,
                                            tokenizer,
                                            output_file,
                                            label_type=None):
987
988
  """Convert a set of `InputExample`s to a TFRecord file."""

989
  tf.io.gfile.makedirs(os.path.dirname(output_file))
990
991
992
993
  writer = tf.io.TFRecordWriter(output_file)

  for (ex_index, example) in enumerate(examples):
    if ex_index % 10000 == 0:
994
      logging.info("Writing example %d of %d", ex_index, len(examples))
995
996
997
998
999
1000
1001

    feature = convert_single_example(ex_index, example, label_list,
                                     max_seq_length, tokenizer)

    def create_int_feature(values):
      f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
      return f
Tianqi Liu's avatar
Tianqi Liu committed
1002

Maxim Neumann's avatar
Maxim Neumann committed
1003
1004
1005
    def create_float_feature(values):
      f = tf.train.Feature(float_list=tf.train.FloatList(value=list(values)))
      return f
1006
1007
1008
1009
1010

    features = collections.OrderedDict()
    features["input_ids"] = create_int_feature(feature.input_ids)
    features["input_mask"] = create_int_feature(feature.input_mask)
    features["segment_ids"] = create_int_feature(feature.segment_ids)
Maxim Neumann's avatar
Maxim Neumann committed
1011
1012
    if label_type is not None and label_type == float:
      features["label_ids"] = create_float_feature([feature.label_id])
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1013
    elif feature.label_id is not None:
Maxim Neumann's avatar
Maxim Neumann committed
1014
      features["label_ids"] = create_int_feature([feature.label_id])
1015
1016
    features["is_real_example"] = create_int_feature(
        [int(feature.is_real_example)])
Maxim Neumann's avatar
Maxim Neumann committed
1017
1018
    if feature.weight is not None:
      features["weight"] = create_float_feature([feature.weight])
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1019
1020
    if feature.int_iden is not None:
      features["int_iden"] = create_int_feature([feature.int_iden])
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045

    tf_example = tf.train.Example(features=tf.train.Features(feature=features))
    writer.write(tf_example.SerializeToString())
  writer.close()


def _truncate_seq_pair(tokens_a, tokens_b, max_length):
  """Truncates a sequence pair in place to the maximum length."""

  # This is a simple heuristic which will always truncate the longer sequence
  # one token at a time. This makes more sense than truncating an equal percent
  # of tokens from each, since if one sequence is very short then each token
  # that's truncated likely contains more information than a longer sequence.
  while True:
    total_length = len(tokens_a) + len(tokens_b)
    if total_length <= max_length:
      break
    if len(tokens_a) > len(tokens_b):
      tokens_a.pop()
    else:
      tokens_b.pop()


def generate_tf_record_from_data_file(processor,
                                      data_dir,
1046
                                      tokenizer,
1047
1048
                                      train_data_output_path=None,
                                      eval_data_output_path=None,
Tianqi Liu's avatar
Tianqi Liu committed
1049
                                      test_data_output_path=None,
1050
                                      max_seq_length=128):
1051
1052
1053
1054
1055
  """Generates and saves training data into a tf record file.

  Arguments:
      processor: Input processor object to be used for generating data. Subclass
        of `DataProcessor`.
1056
      data_dir: Directory that contains train/eval/test data to process.
1057
      tokenizer: The tokenizer to be applied on the data.
1058
1059
1060
1061
      train_data_output_path: Output to which processed tf record for training
        will be saved.
      eval_data_output_path: Output to which processed tf record for evaluation
        will be saved.
Tianqi Liu's avatar
Tianqi Liu committed
1062
      test_data_output_path: Output to which processed tf record for testing
Tianqi Liu's avatar
Tianqi Liu committed
1063
1064
        will be saved. Must be a pattern template with {} if processor has
        language specific test data.
1065
1066
1067
1068
1069
1070
1071
1072
1073
      max_seq_length: Maximum sequence length of the to be generated
        training/eval data.

  Returns:
      A dictionary containing input meta data.
  """
  assert train_data_output_path or eval_data_output_path

  label_list = processor.get_labels()
Maxim Neumann's avatar
Maxim Neumann committed
1074
1075
  label_type = getattr(processor, "label_type", None)
  is_regression = getattr(processor, "is_regression", False)
Maxim Neumann's avatar
Maxim Neumann committed
1076
  has_sample_weights = getattr(processor, "weight_key", False)
1077
  assert train_data_output_path
Maxim Neumann's avatar
Maxim Neumann committed
1078

1079
1080
1081
  train_input_data_examples = processor.get_train_examples(data_dir)
  file_based_convert_examples_to_features(train_input_data_examples, label_list,
                                          max_seq_length, tokenizer,
Tianqi Liu's avatar
Tianqi Liu committed
1082
                                          train_data_output_path, label_type)
1083
1084
1085
1086
1087
1088
  num_training_data = len(train_input_data_examples)

  if eval_data_output_path:
    eval_input_data_examples = processor.get_dev_examples(data_dir)
    file_based_convert_examples_to_features(eval_input_data_examples,
                                            label_list, max_seq_length,
Maxim Neumann's avatar
Maxim Neumann committed
1089
1090
                                            tokenizer, eval_data_output_path,
                                            label_type)
1091

1092
1093
1094
1095
1096
1097
  meta_data = {
      "processor_type": processor.get_processor_name(),
      "train_data_size": num_training_data,
      "max_seq_length": max_seq_length,
  }

Tianqi Liu's avatar
Tianqi Liu committed
1098
1099
1100
1101
1102
  if test_data_output_path:
    test_input_data_examples = processor.get_test_examples(data_dir)
    if isinstance(test_input_data_examples, dict):
      for language, examples in test_input_data_examples.items():
        file_based_convert_examples_to_features(
Tianqi Liu's avatar
Tianqi Liu committed
1103
1104
            examples, label_list, max_seq_length, tokenizer,
            test_data_output_path.format(language), label_type)
1105
        meta_data["test_{}_data_size".format(language)] = len(examples)
Tianqi Liu's avatar
Tianqi Liu committed
1106
1107
1108
    else:
      file_based_convert_examples_to_features(test_input_data_examples,
                                              label_list, max_seq_length,
Maxim Neumann's avatar
Maxim Neumann committed
1109
1110
                                              tokenizer, test_data_output_path,
                                              label_type)
1111
      meta_data["test_data_size"] = len(test_input_data_examples)
Tianqi Liu's avatar
Tianqi Liu committed
1112

Maxim Neumann's avatar
Maxim Neumann committed
1113
1114
1115
1116
1117
1118
  if is_regression:
    meta_data["task_type"] = "bert_regression"
    meta_data["label_type"] = {int: "int", float: "float"}[label_type]
  else:
    meta_data["task_type"] = "bert_classification"
    meta_data["num_labels"] = len(processor.get_labels())
Maxim Neumann's avatar
Maxim Neumann committed
1119
1120
  if has_sample_weights:
    meta_data["has_sample_weights"] = True
1121
1122
1123
1124
1125

  if eval_data_output_path:
    meta_data["eval_data_size"] = len(eval_input_data_examples)

  return meta_data