train_lib.py 8.69 KB
Newer Older
Hongkun Yu's avatar
Hongkun Yu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Multitask training driver library."""
# pytype: disable=attribute-error
import os
from absl import logging
import orbit
import tensorflow as tf
from official.core import base_task
from official.core import base_trainer as core_lib
23
from official.core import train_utils
24
25
from official.modeling.multitask import base_model
from official.modeling.multitask import base_trainer
Hongkun Yu's avatar
Hongkun Yu committed
26
27
from official.modeling.multitask import configs
from official.modeling.multitask import evaluator as evaluator_lib
28
from official.modeling.multitask import interleaving_trainer
Hongkun Yu's avatar
Hongkun Yu committed
29
from official.modeling.multitask import multitask
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
from official.modeling.multitask import task_sampler

TRAINERS = {
    'interleaving': interleaving_trainer.MultiTaskInterleavingTrainer,
    'joint': base_trainer.MultiTaskBaseTrainer
}


def run_experiment(*, distribution_strategy: tf.distribute.Strategy,
                   task: multitask.MultiTask,
                   model: base_model.MultiTaskBaseModel, mode: str,
                   params: configs.MultiTaskExperimentConfig,
                   model_dir: str) -> base_model.MultiTaskBaseModel:
  """Runs train/eval configured by the experiment params.

  Args:
    distribution_strategy: A distribution distribution_strategy.
    task: A MultiTaskTask instance.
    model: A MultiTaskBaseModel instance.
    mode: A 'str', specifying the mode. Can be 'train', 'eval', 'train_and_eval'
      or 'continuous_eval'.
    params: ExperimentConfig instance.
    model_dir: A 'str', a path to store model checkpoints and summaries.

  Returns:
      model: `base_model.MultiTaskBaseModel` instance.
  """

  is_training = 'train' in mode
  is_eval = 'eval' in mode
  with distribution_strategy.scope():
    optimizer = task.create_optimizer(params.trainer.optimizer_config,
                                      params.runtime)
    kwargs = dict(multi_task=task, multi_task_model=model, optimizer=optimizer)
    if params.trainer.trainer_type == 'interleaving':
      sampler = task_sampler.get_task_sampler(params.trainer.task_sampler,
                                              task.task_weights)
      kwargs.update(dict(task_sampler=sampler))
    trainer = TRAINERS[params.trainer.trainer_type](
        **kwargs) if is_training else None
    if is_eval:
      evaluator = evaluator_lib.MultiTaskEvaluator(
          task=task,
          model=model,
          global_step=trainer.global_step if is_training else None)
    else:
      evaluator = None

  if trainer:
    checkpoint = trainer.checkpoint
    global_step = trainer.global_step
  else:
    checkpoint = evaluator.checkpoint
    global_step = evaluator.global_step

  # TODO(hongkuny,haozhangthu): Revisit initialization method.
  checkpoint_manager = tf.train.CheckpointManager(
      checkpoint,
      directory=model_dir,
      max_to_keep=params.trainer.max_to_keep,
      step_counter=global_step,
      checkpoint_interval=params.trainer.checkpoint_interval,
      init_fn=model.initialize)

  controller = orbit.Controller(
      strategy=distribution_strategy,
      trainer=trainer,
      evaluator=evaluator,
      global_step=global_step,
      steps_per_loop=params.trainer.steps_per_loop,
      checkpoint_manager=checkpoint_manager,
      summary_dir=os.path.join(model_dir, 'train'),
      eval_summary_dir=os.path.join(model_dir, 'validation'),
      summary_interval=params.trainer.summary_interval)

  logging.info('Starts to execute mode: %s', mode)
  with distribution_strategy.scope():
    if mode == 'train':
      controller.train(steps=params.trainer.train_steps)
    elif mode == 'train_and_eval':
      controller.train_and_evaluate(
          train_steps=params.trainer.train_steps,
          eval_steps=params.trainer.validation_steps,
          eval_interval=params.trainer.validation_interval)
    elif mode == 'eval':
      controller.evaluate(steps=params.trainer.validation_steps)
    elif mode == 'continuous_eval':

      def timeout_fn():
        if evaluator.global_step.numpy() >= params.trainer.train_steps:
          return True
        return False

      controller.evaluate_continuously(
          steps=params.trainer.validation_steps,
          timeout=params.trainer.continuous_eval_timeout,
          timeout_fn=timeout_fn)
    else:
      raise NotImplementedError('The mode is not implemented: %s' % mode)

    return model
Hongkun Yu's avatar
Hongkun Yu committed
131
132


133
def run_experiment_with_multitask_eval(
Hongkun Yu's avatar
Hongkun Yu committed
134
    *,
Hongkun Yu's avatar
Hongkun Yu committed
135
136
137
138
    distribution_strategy: tf.distribute.Strategy,
    train_task: base_task.Task,
    eval_tasks: multitask.MultiTask,
    mode: str,
Hongkun Yu's avatar
Hongkun Yu committed
139
    params: configs.MultiEvalExperimentConfig,
Hongkun Yu's avatar
Hongkun Yu committed
140
141
142
    model_dir: str,
    run_post_eval: bool = False,
    save_summary: bool = True) -> tf.keras.Model:
Hongkun Yu's avatar
Hongkun Yu committed
143
144
145
146
147
148
149
150
151
152
  """Runs train/eval configured by the experiment params.

  Args:
    distribution_strategy: A distribution distribution_strategy.
    train_task: A base_task.Task instance.
    eval_tasks: A multitask.MultiTask with evaluation tasks.
    mode: A 'str', specifying the mode. Can be 'train', 'eval', 'train_and_eval'
      or 'continuous_eval'.
    params: MultiEvalExperimentConfig instance.
    model_dir: A 'str', a path to store model checkpoints and summaries.
Hongkun Yu's avatar
Hongkun Yu committed
153
154
155
    run_post_eval: Whether to run post eval once after training, metrics logs
      are returned.
    save_summary: Whether to save train and validation summary.
Hongkun Yu's avatar
Hongkun Yu committed
156
157
158
159
160
161
162
163

  Returns:
      model: `tf.keras.Model` instance.
  """

  is_training = 'train' in mode
  is_eval = 'eval' in mode
  with distribution_strategy.scope():
164
165
    optimizer = train_task.create_optimizer(params.trainer.optimizer_config,
                                            params.runtime)
Hongkun Yu's avatar
Hongkun Yu committed
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
    model = train_task.build_model()
    if is_training:
      trainer = core_lib.Trainer(
          config=params,
          task=train_task,
          model=model,
          optimizer=optimizer,
          train=True,
          evaluate=False)
    else:
      trainer = None
    if is_eval:
      evaluator = evaluator_lib.MultiTaskEvaluator(
          task=eval_tasks,
          model=model,
181
182
183
          global_step=trainer.global_step if is_training else None,
          checkpoint_exporter=train_utils.maybe_create_best_ckpt_exporter(
              params, model_dir))
Hongkun Yu's avatar
Hongkun Yu committed
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
    else:
      evaluator = None

  if trainer:
    checkpoint = trainer.checkpoint
    global_step = trainer.global_step
  else:
    checkpoint = evaluator.checkpoint
    global_step = evaluator.global_step

  checkpoint_manager = tf.train.CheckpointManager(
      checkpoint,
      directory=model_dir,
      max_to_keep=params.trainer.max_to_keep,
      step_counter=global_step,
      checkpoint_interval=params.trainer.checkpoint_interval,
      init_fn=trainer.initialize if trainer else None)

  controller = orbit.Controller(
      strategy=distribution_strategy,
      trainer=trainer,
      evaluator=evaluator,
      global_step=global_step,
      steps_per_loop=params.trainer.steps_per_loop,
      checkpoint_manager=checkpoint_manager,
Hongkun Yu's avatar
Hongkun Yu committed
209
210
211
212
213
      summary_dir=os.path.join(model_dir, 'train') if save_summary else None,
      eval_summary_dir=os.path.join(model_dir, 'validation') if
      (save_summary) else None,
      summary_interval=params.trainer.summary_interval if
      (save_summary) else None)
Hongkun Yu's avatar
Hongkun Yu committed
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239

  logging.info('Starts to execute mode: %s', mode)
  with distribution_strategy.scope():
    if mode == 'train':
      controller.train(steps=params.trainer.train_steps)
    elif mode == 'train_and_eval':
      controller.train_and_evaluate(
          train_steps=params.trainer.train_steps,
          eval_steps=params.trainer.validation_steps,
          eval_interval=params.trainer.validation_interval)
    elif mode == 'eval':
      controller.evaluate(steps=params.trainer.validation_steps)
    elif mode == 'continuous_eval':

      def timeout_fn():
        if evaluator.global_step.numpy() >= params.trainer.train_steps:
          return True
        return False

      controller.evaluate_continuously(
          steps=params.trainer.validation_steps,
          timeout=params.trainer.continuous_eval_timeout,
          timeout_fn=timeout_fn)
    else:
      raise NotImplementedError('The mode is not implemented: %s' % mode)

Hongkun Yu's avatar
Hongkun Yu committed
240
241
242
243
244
    if run_post_eval:
      return model, evaluator.evaluate(
          tf.convert_to_tensor(params.trainer.validation_steps))
    else:
      return model, {}