variable_mapping.py 25.3 KB
Newer Older
Andrew M. Dai's avatar
Andrew M. Dai committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

# Dependency imports

import tensorflow as tf

FLAGS = tf.app.flags.FLAGS


def rnn_nas(hparams, model):
  assert model == 'gen' or model == 'dis'

  # This logic is only valid for rnn_zaremba
  if model == 'gen':
    assert FLAGS.generator_model == 'rnn_nas'
    assert hparams.gen_num_layers == 2

  if model == 'dis':
    assert FLAGS.discriminator_model == 'rnn_nas'
    assert hparams.dis_num_layers == 2

  # Output variables only for the Generator.  Discriminator output biases
  # will begin randomly initialized.
  if model == 'gen':
    softmax_b = [
        v for v in tf.trainable_variables() if v.op.name == 'gen/rnn/softmax_b'
    ][0]

  # Common elements to Generator and Discriminator.
  embedding = [
      v for v in tf.trainable_variables()
      if v.op.name == str(model) + '/rnn/embedding'
  ][0]
  lstm_w_0 = [
      v for v in tf.trainable_variables()
      if v.op.name ==
      str(model) + '/rnn/GenericMultiRNNCell/Cell0/Alien/rnn_builder/big_h_mat'
  ][0]
  lstm_b_0 = [
      v for v in tf.trainable_variables()
      if v.op.name == str(model) +
      '/rnn/GenericMultiRNNCell/Cell0/Alien/rnn_builder/big_inputs_mat'
  ][0]
  lstm_w_1 = [
      v for v in tf.trainable_variables()
      if v.op.name ==
      str(model) + '/rnn/GenericMultiRNNCell/Cell1/Alien/rnn_builder/big_h_mat'
  ][0]
  lstm_b_1 = [
      v for v in tf.trainable_variables()
      if v.op.name == str(model) +
      '/rnn/GenericMultiRNNCell/Cell1/Alien/rnn_builder/big_inputs_mat'
  ][0]

  # Dictionary mapping.
  if model == 'gen':
    variable_mapping = {
        'Model/embeddings/input_embedding':
            embedding,
        'Model/RNN/GenericMultiRNNCell/Cell0/Alien/rnn_builder/big_h_mat':
            lstm_w_0,
        'Model/RNN/GenericMultiRNNCell/Cell0/Alien/rnn_builder/big_inputs_mat':
            lstm_b_0,
        'Model/RNN/GenericMultiRNNCell/Cell1/Alien/rnn_builder/big_h_mat':
            lstm_w_1,
        'Model/RNN/GenericMultiRNNCell/Cell1/Alien/rnn_builder/big_inputs_mat':
            lstm_b_1,
        'Model/softmax_b':
            softmax_b
    }
  else:
    variable_mapping = {
        'Model/embeddings/input_embedding':
            embedding,
        'Model/RNN/GenericMultiRNNCell/Cell0/Alien/rnn_builder/big_h_mat':
            lstm_w_0,
        'Model/RNN/GenericMultiRNNCell/Cell0/Alien/rnn_builder/big_inputs_mat':
            lstm_b_0,
        'Model/RNN/GenericMultiRNNCell/Cell1/Alien/rnn_builder/big_h_mat':
            lstm_w_1,
        'Model/RNN/GenericMultiRNNCell/Cell1/Alien/rnn_builder/big_inputs_mat':
            lstm_b_1
    }

  return variable_mapping


def cnn():
  """Variable mapping for the CNN embedding.

  Returns:
    variable_mapping:  Dictionary with Key: ckpt_name, Value: model_var.
  """
  # This logic is only valid for cnn
  assert FLAGS.discriminator_model == 'cnn'

  # Retrieve CNN embedding.
  embedding = [
      v for v in tf.trainable_variables() if v.op.name == 'dis/embedding'
  ][0]

  # Variable mapping.
  variable_mapping = {'Model/embedding': embedding}

  return variable_mapping


def rnn_zaremba(hparams, model):
  """Returns the PTB Variable name to MaskGAN Variable dictionary mapping.  This
  is a highly restrictive function just for testing.  This will need to be
  generalized.

  Args:
    hparams:  Hyperparameters for the MaskGAN.
    model:  Model type, one of ['gen', 'dis'].

  Returns:
    variable_mapping:  Dictionary with Key: ckpt_name, Value: model_var.
  """
  assert model == 'gen' or model == 'dis'

  # This logic is only valid for rnn_zaremba
  if model == 'gen':
    assert FLAGS.generator_model == 'rnn_zaremba'
    assert hparams.gen_num_layers == 2

  if model == 'dis':
    assert (FLAGS.discriminator_model == 'rnn_zaremba' or
            FLAGS.discriminator_model == 'rnn_vd')
    assert hparams.dis_num_layers == 2

  # Output variables only for the Generator.  Discriminator output weights
  # and biases will begin randomly initialized.
  if model == 'gen':
    softmax_w = [
        v for v in tf.trainable_variables() if v.op.name == 'gen/rnn/softmax_w'
    ][0]
    softmax_b = [
        v for v in tf.trainable_variables() if v.op.name == 'gen/rnn/softmax_b'
    ][0]

  # Common elements to Generator and Discriminator.
  if not FLAGS.dis_share_embedding or model != 'dis':
    embedding = [
        v for v in tf.trainable_variables()
        if v.op.name == str(model) + '/rnn/embedding'
    ][0]
  lstm_w_0 = [
166
167
      v for v in tf.trainable_variables() if v.op.name == str(model) +
      '/rnn/multi_rnn_cell/cell_0/basic_lstm_cell/kernel'
Andrew M. Dai's avatar
Andrew M. Dai committed
168
169
  ][0]
  lstm_b_0 = [
170
171
      v for v in tf.trainable_variables() if v.op.name == str(model) +
      '/rnn/multi_rnn_cell/cell_0/basic_lstm_cell/bias'
Andrew M. Dai's avatar
Andrew M. Dai committed
172
173
  ][0]
  lstm_w_1 = [
174
175
      v for v in tf.trainable_variables() if v.op.name == str(model) +
      '/rnn/multi_rnn_cell/cell_1/basic_lstm_cell/kernel'
Andrew M. Dai's avatar
Andrew M. Dai committed
176
177
  ][0]
  lstm_b_1 = [
178
179
      v for v in tf.trainable_variables() if v.op.name == str(model) +
      '/rnn/multi_rnn_cell/cell_1/basic_lstm_cell/bias'
Andrew M. Dai's avatar
Andrew M. Dai committed
180
181
182
183
184
185
  ][0]

  # Dictionary mapping.
  if model == 'gen':
    variable_mapping = {
        'Model/embedding': embedding,
186
187
188
189
        'Model/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/kernel': lstm_w_0,
        'Model/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/bias': lstm_b_0,
        'Model/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/kernel': lstm_w_1,
        'Model/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/bias': lstm_b_1,
Andrew M. Dai's avatar
Andrew M. Dai committed
190
191
192
193
194
195
        'Model/softmax_w': softmax_w,
        'Model/softmax_b': softmax_b
    }
  else:
    if FLAGS.dis_share_embedding:
      variable_mapping = {
196
197
198
199
          'Model/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/kernel': lstm_w_0,
          'Model/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/bias': lstm_b_0,
          'Model/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/kernel': lstm_w_1,
          'Model/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/bias': lstm_b_1
Andrew M. Dai's avatar
Andrew M. Dai committed
200
201
202
203
      }
    else:
      variable_mapping = {
          'Model/embedding': embedding,
204
205
206
207
          'Model/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/kernel': lstm_w_0,
          'Model/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/bias': lstm_b_0,
          'Model/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/kernel': lstm_w_1,
          'Model/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/bias': lstm_b_1
Andrew M. Dai's avatar
Andrew M. Dai committed
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
      }

  return variable_mapping


def gen_encoder_seq2seq_nas(hparams):
  """Returns the NAS Variable name to MaskGAN Variable
  dictionary mapping.  This is a highly restrictive function just for testing.
  This is for the *unidirecitional* seq2seq_nas encoder.

  Args:
    hparams:  Hyperparameters for the MaskGAN.

  Returns:
    variable_mapping:  Dictionary with Key: ckpt_name, Value: model_varself.
  """
  assert FLAGS.generator_model == 'seq2seq_nas'
  assert hparams.gen_num_layers == 2
  ## Encoder forward variables.

  if not FLAGS.seq2seq_share_embedding:
    encoder_embedding = [
        v for v in tf.trainable_variables()
        if v.op.name == 'gen/encoder/rnn/embedding'
    ][0]
  encoder_lstm_w_0 = [
      v for v in tf.trainable_variables()
      if v.op.name ==
      'gen/encoder/rnn/GenericMultiRNNCell/Cell0/Alien/rnn_builder/big_h_mat'
  ][0]
  encoder_lstm_b_0 = [
      v for v in tf.trainable_variables()
      if v.op.name ==
      'gen/encoder/rnn/GenericMultiRNNCell/Cell0/Alien/rnn_builder/big_inputs_mat'
  ][0]
  encoder_lstm_w_1 = [
      v for v in tf.trainable_variables()
      if v.op.name ==
      'gen/encoder/rnn/GenericMultiRNNCell/Cell1/Alien/rnn_builder/big_h_mat'
  ][0]
  encoder_lstm_b_1 = [
      v for v in tf.trainable_variables()
      if v.op.name ==
      'gen/encoder/rnn/GenericMultiRNNCell/Cell1/Alien/rnn_builder/big_inputs_mat'
  ][0]

  if not FLAGS.seq2seq_share_embedding:
    variable_mapping = {
        'Model/embeddings/input_embedding':
            encoder_embedding,
        'Model/RNN/GenericMultiRNNCell/Cell0/Alien/rnn_builder/big_h_mat':
            encoder_lstm_w_0,
        'Model/RNN/GenericMultiRNNCell/Cell0/Alien/rnn_builder/big_inputs_mat':
            encoder_lstm_b_0,
        'Model/RNN/GenericMultiRNNCell/Cell1/Alien/rnn_builder/big_h_mat':
            encoder_lstm_w_1,
        'Model/RNN/GenericMultiRNNCell/Cell1/Alien/rnn_builder/big_inputs_mat':
            encoder_lstm_b_1
    }
  else:
    variable_mapping = {
        'Model/RNN/GenericMultiRNNCell/Cell0/Alien/rnn_builder/big_h_mat':
            encoder_lstm_w_0,
        'Model/RNN/GenericMultiRNNCell/Cell0/Alien/rnn_builder/big_inputs_mat':
            encoder_lstm_b_0,
        'Model/RNN/GenericMultiRNNCell/Cell1/Alien/rnn_builder/big_h_mat':
            encoder_lstm_w_1,
        'Model/RNN/GenericMultiRNNCell/Cell1/Alien/rnn_builder/big_inputs_mat':
            encoder_lstm_b_1
    }
  return variable_mapping


def gen_decoder_seq2seq_nas(hparams):
  assert FLAGS.generator_model == 'seq2seq_nas'
  assert hparams.gen_num_layers == 2

  decoder_embedding = [
      v for v in tf.trainable_variables()
      if v.op.name == 'gen/decoder/rnn/embedding'
  ][0]
  decoder_lstm_w_0 = [
      v for v in tf.trainable_variables()
      if v.op.name ==
      'gen/decoder/rnn/GenericMultiRNNCell/Cell0/Alien/rnn_builder/big_h_mat'
  ][0]
  decoder_lstm_b_0 = [
      v for v in tf.trainable_variables()
      if v.op.name ==
      'gen/decoder/rnn/GenericMultiRNNCell/Cell0/Alien/rnn_builder/big_inputs_mat'
  ][0]
  decoder_lstm_w_1 = [
      v for v in tf.trainable_variables()
      if v.op.name ==
      'gen/decoder/rnn/GenericMultiRNNCell/Cell1/Alien/rnn_builder/big_h_mat'
  ][0]
  decoder_lstm_b_1 = [
      v for v in tf.trainable_variables()
      if v.op.name ==
      'gen/decoder/rnn/GenericMultiRNNCell/Cell1/Alien/rnn_builder/big_inputs_mat'
  ][0]

  decoder_softmax_b = [
      v for v in tf.trainable_variables()
      if v.op.name == 'gen/decoder/rnn/softmax_b'
  ][0]

  variable_mapping = {
      'Model/embeddings/input_embedding':
          decoder_embedding,
      'Model/RNN/GenericMultiRNNCell/Cell0/Alien/rnn_builder/big_h_mat':
          decoder_lstm_w_0,
      'Model/RNN/GenericMultiRNNCell/Cell0/Alien/rnn_builder/big_inputs_mat':
          decoder_lstm_b_0,
      'Model/RNN/GenericMultiRNNCell/Cell1/Alien/rnn_builder/big_h_mat':
          decoder_lstm_w_1,
      'Model/RNN/GenericMultiRNNCell/Cell1/Alien/rnn_builder/big_inputs_mat':
          decoder_lstm_b_1,
      'Model/softmax_b':
          decoder_softmax_b
  }

  return variable_mapping


def gen_encoder_seq2seq(hparams):
  """Returns the PTB Variable name to MaskGAN Variable
  dictionary mapping.  This is a highly restrictive function just for testing.
  This is foe the *unidirecitional* seq2seq_zaremba encoder.

  Args:
    hparams:  Hyperparameters for the MaskGAN.

  Returns:
    variable_mapping:  Dictionary with Key: ckpt_name, Value: model_varself.
  """
  assert (FLAGS.generator_model == 'seq2seq_zaremba' or
          FLAGS.generator_model == 'seq2seq_vd')
  assert hparams.gen_num_layers == 2

  ## Encoder forward variables.
  if not FLAGS.seq2seq_share_embedding:
    encoder_embedding = [
        v for v in tf.trainable_variables()
        if v.op.name == 'gen/encoder/rnn/embedding'
    ][0]
  encoder_lstm_w_0 = [
355
356
      v for v in tf.trainable_variables() if v.op.name ==
      'gen/encoder/rnn/multi_rnn_cell/cell_0/basic_lstm_cell/kernel'
Andrew M. Dai's avatar
Andrew M. Dai committed
357
358
  ][0]
  encoder_lstm_b_0 = [
359
360
      v for v in tf.trainable_variables() if v.op.name ==
      'gen/encoder/rnn/multi_rnn_cell/cell_0/basic_lstm_cell/bias'
Andrew M. Dai's avatar
Andrew M. Dai committed
361
362
  ][0]
  encoder_lstm_w_1 = [
363
364
      v for v in tf.trainable_variables() if v.op.name ==
      'gen/encoder/rnn/multi_rnn_cell/cell_1/basic_lstm_cell/kernel'
Andrew M. Dai's avatar
Andrew M. Dai committed
365
366
  ][0]
  encoder_lstm_b_1 = [
367
368
      v for v in tf.trainable_variables() if v.op.name ==
      'gen/encoder/rnn/multi_rnn_cell/cell_1/basic_lstm_cell/bias'
Andrew M. Dai's avatar
Andrew M. Dai committed
369
370
371
372
373
374
375
376
377
378
379
  ][0]

  if FLAGS.data_set == 'ptb':
    model_str = 'Model'
  else:
    model_str = 'model'

  if not FLAGS.seq2seq_share_embedding:
    variable_mapping = {
        str(model_str) + '/embedding':
            encoder_embedding,
380
        str(model_str) + '/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/kernel':
Andrew M. Dai's avatar
Andrew M. Dai committed
381
            encoder_lstm_w_0,
382
        str(model_str) + '/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/bias':
Andrew M. Dai's avatar
Andrew M. Dai committed
383
            encoder_lstm_b_0,
384
        str(model_str) + '/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/kernel':
Andrew M. Dai's avatar
Andrew M. Dai committed
385
            encoder_lstm_w_1,
386
        str(model_str) + '/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/bias':
Andrew M. Dai's avatar
Andrew M. Dai committed
387
388
389
390
            encoder_lstm_b_1
    }
  else:
    variable_mapping = {
391
        str(model_str) + '/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/kernel':
Andrew M. Dai's avatar
Andrew M. Dai committed
392
            encoder_lstm_w_0,
393
        str(model_str) + '/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/bias':
Andrew M. Dai's avatar
Andrew M. Dai committed
394
            encoder_lstm_b_0,
395
        str(model_str) + '/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/kernel':
Andrew M. Dai's avatar
Andrew M. Dai committed
396
            encoder_lstm_w_1,
397
        str(model_str) + '/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/bias':
Andrew M. Dai's avatar
Andrew M. Dai committed
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
            encoder_lstm_b_1
    }
  return variable_mapping


def gen_decoder_seq2seq(hparams):
  assert (FLAGS.generator_model == 'seq2seq_zaremba' or
          FLAGS.generator_model == 'seq2seq_vd')
  assert hparams.gen_num_layers == 2

  decoder_embedding = [
      v for v in tf.trainable_variables()
      if v.op.name == 'gen/decoder/rnn/embedding'
  ][0]
  decoder_lstm_w_0 = [
413
414
      v for v in tf.trainable_variables() if v.op.name ==
      'gen/decoder/rnn/multi_rnn_cell/cell_0/basic_lstm_cell/kernel'
Andrew M. Dai's avatar
Andrew M. Dai committed
415
416
  ][0]
  decoder_lstm_b_0 = [
417
418
      v for v in tf.trainable_variables() if v.op.name ==
      'gen/decoder/rnn/multi_rnn_cell/cell_0/basic_lstm_cell/bias'
Andrew M. Dai's avatar
Andrew M. Dai committed
419
420
  ][0]
  decoder_lstm_w_1 = [
421
422
      v for v in tf.trainable_variables() if v.op.name ==
      'gen/decoder/rnn/multi_rnn_cell/cell_1/basic_lstm_cell/kernel'
Andrew M. Dai's avatar
Andrew M. Dai committed
423
424
  ][0]
  decoder_lstm_b_1 = [
425
426
      v for v in tf.trainable_variables() if v.op.name ==
      'gen/decoder/rnn/multi_rnn_cell/cell_1/basic_lstm_cell/bias'
Andrew M. Dai's avatar
Andrew M. Dai committed
427
428
429
430
431
432
433
434
435
436
437
438
439
440
  ][0]
  decoder_softmax_b = [
      v for v in tf.trainable_variables()
      if v.op.name == 'gen/decoder/rnn/softmax_b'
  ][0]

  if FLAGS.data_set == 'ptb':
    model_str = 'Model'
  else:
    model_str = 'model'

  variable_mapping = {
      str(model_str) + '/embedding':
          decoder_embedding,
441
      str(model_str) + '/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/kernel':
Andrew M. Dai's avatar
Andrew M. Dai committed
442
          decoder_lstm_w_0,
443
      str(model_str) + '/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/bias':
Andrew M. Dai's avatar
Andrew M. Dai committed
444
          decoder_lstm_b_0,
445
      str(model_str) + '/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/kernel':
Andrew M. Dai's avatar
Andrew M. Dai committed
446
          decoder_lstm_w_1,
447
      str(model_str) + '/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/bias':
Andrew M. Dai's avatar
Andrew M. Dai committed
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
          decoder_lstm_b_1,
      str(model_str) + '/softmax_b':
          decoder_softmax_b
  }
  return variable_mapping


def dis_fwd_bidirectional(hparams):
  """Returns the *forward* PTB Variable name to MaskGAN Variable dictionary
  mapping.  This is a highly restrictive function just for testing. This is for
  the bidirectional_zaremba discriminator.

  Args:
    FLAGS:  Flags for the model.
    hparams:  Hyperparameters for the MaskGAN.

  Returns:
    variable_mapping:  Dictionary with Key: ckpt_name, Value: model_varself.
  """
  assert (FLAGS.discriminator_model == 'bidirectional_zaremba' or
          FLAGS.discriminator_model == 'bidirectional_vd')
  assert hparams.dis_num_layers == 2

  # Forward Discriminator Elements.
  if not FLAGS.dis_share_embedding:
    embedding = [
        v for v in tf.trainable_variables() if v.op.name == 'dis/embedding'
    ][0]
  fw_lstm_w_0 = [
      v for v in tf.trainable_variables()
478
      if v.op.name == 'dis/rnn/fw/multi_rnn_cell/cell_0/basic_lstm_cell/kernel'
Andrew M. Dai's avatar
Andrew M. Dai committed
479
480
481
  ][0]
  fw_lstm_b_0 = [
      v for v in tf.trainable_variables()
482
      if v.op.name == 'dis/rnn/fw/multi_rnn_cell/cell_0/basic_lstm_cell/bias'
Andrew M. Dai's avatar
Andrew M. Dai committed
483
484
485
  ][0]
  fw_lstm_w_1 = [
      v for v in tf.trainable_variables()
486
      if v.op.name == 'dis/rnn/fw/multi_rnn_cell/cell_1/basic_lstm_cell/kernel'
Andrew M. Dai's avatar
Andrew M. Dai committed
487
488
489
  ][0]
  fw_lstm_b_1 = [
      v for v in tf.trainable_variables()
490
      if v.op.name == 'dis/rnn/fw/multi_rnn_cell/cell_1/basic_lstm_cell/bias'
Andrew M. Dai's avatar
Andrew M. Dai committed
491
492
493
  ][0]
  if FLAGS.dis_share_embedding:
    variable_mapping = {
494
495
496
497
        'Model/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/kernel': fw_lstm_w_0,
        'Model/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/bias': fw_lstm_b_0,
        'Model/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/kernel': fw_lstm_w_1,
        'Model/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/bias': fw_lstm_b_1
Andrew M. Dai's avatar
Andrew M. Dai committed
498
499
500
501
    }
  else:
    variable_mapping = {
        'Model/embedding': embedding,
502
503
504
505
        'Model/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/kernel': fw_lstm_w_0,
        'Model/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/bias': fw_lstm_b_0,
        'Model/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/kernel': fw_lstm_w_1,
        'Model/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/bias': fw_lstm_b_1
Andrew M. Dai's avatar
Andrew M. Dai committed
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
    }
  return variable_mapping


def dis_bwd_bidirectional(hparams):
  """Returns the *backward* PTB Variable name to MaskGAN Variable dictionary
  mapping.  This is a highly restrictive function just for testing. This is for
  the bidirectional_zaremba discriminator.

  Args:
    hparams:  Hyperparameters for the MaskGAN.

  Returns:
    variable_mapping:  Dictionary with Key: ckpt_name, Value: model_varself.
  """
  assert (FLAGS.discriminator_model == 'bidirectional_zaremba' or
          FLAGS.discriminator_model == 'bidirectional_vd')
  assert hparams.dis_num_layers == 2

  # Backward Discriminator Elements.
  bw_lstm_w_0 = [
      v for v in tf.trainable_variables()
528
      if v.op.name == 'dis/rnn/bw/multi_rnn_cell/cell_0/basic_lstm_cell/kernel'
Andrew M. Dai's avatar
Andrew M. Dai committed
529
530
531
  ][0]
  bw_lstm_b_0 = [
      v for v in tf.trainable_variables()
532
      if v.op.name == 'dis/rnn/bw/multi_rnn_cell/cell_0/basic_lstm_cell/bias'
Andrew M. Dai's avatar
Andrew M. Dai committed
533
534
535
  ][0]
  bw_lstm_w_1 = [
      v for v in tf.trainable_variables()
536
      if v.op.name == 'dis/rnn/bw/multi_rnn_cell/cell_1/basic_lstm_cell/kernel'
Andrew M. Dai's avatar
Andrew M. Dai committed
537
538
539
  ][0]
  bw_lstm_b_1 = [
      v for v in tf.trainable_variables()
540
      if v.op.name == 'dis/rnn/bw/multi_rnn_cell/cell_1/basic_lstm_cell/bias'
Andrew M. Dai's avatar
Andrew M. Dai committed
541
542
543
  ][0]

  variable_mapping = {
544
545
546
547
      'Model/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/kernel': bw_lstm_w_0,
      'Model/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/bias': bw_lstm_b_0,
      'Model/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/kernel': bw_lstm_w_1,
      'Model/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/bias': bw_lstm_b_1
Andrew M. Dai's avatar
Andrew M. Dai committed
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
  }
  return variable_mapping


def dis_encoder_seq2seq(hparams):
  """Returns the PTB Variable name to MaskGAN Variable
  dictionary mapping.

  Args:
    hparams:  Hyperparameters for the MaskGAN.

  Returns:
    variable_mapping:  Dictionary with Key: ckpt_name, Value: model_varself.
  """
  assert FLAGS.discriminator_model == 'seq2seq_vd'
  assert hparams.dis_num_layers == 2

  ## Encoder forward variables.
  encoder_lstm_w_0 = [
567
568
      v for v in tf.trainable_variables() if v.op.name ==
      'dis/encoder/rnn/multi_rnn_cell/cell_0/basic_lstm_cell/kernel'
Andrew M. Dai's avatar
Andrew M. Dai committed
569
570
  ][0]
  encoder_lstm_b_0 = [
571
572
      v for v in tf.trainable_variables() if v.op.name ==
      'dis/encoder/rnn/multi_rnn_cell/cell_0/basic_lstm_cell/bias'
Andrew M. Dai's avatar
Andrew M. Dai committed
573
574
  ][0]
  encoder_lstm_w_1 = [
575
576
      v for v in tf.trainable_variables() if v.op.name ==
      'dis/encoder/rnn/multi_rnn_cell/cell_1/basic_lstm_cell/kernel'
Andrew M. Dai's avatar
Andrew M. Dai committed
577
578
  ][0]
  encoder_lstm_b_1 = [
579
580
      v for v in tf.trainable_variables() if v.op.name ==
      'dis/encoder/rnn/multi_rnn_cell/cell_1/basic_lstm_cell/bias'
Andrew M. Dai's avatar
Andrew M. Dai committed
581
582
583
584
585
586
587
588
  ][0]

  if FLAGS.data_set == 'ptb':
    model_str = 'Model'
  else:
    model_str = 'model'

  variable_mapping = {
589
      str(model_str) + '/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/kernel':
Andrew M. Dai's avatar
Andrew M. Dai committed
590
          encoder_lstm_w_0,
591
      str(model_str) + '/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/bias':
Andrew M. Dai's avatar
Andrew M. Dai committed
592
          encoder_lstm_b_0,
593
      str(model_str) + '/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/kernel':
Andrew M. Dai's avatar
Andrew M. Dai committed
594
          encoder_lstm_w_1,
595
      str(model_str) + '/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/bias':
Andrew M. Dai's avatar
Andrew M. Dai committed
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
          encoder_lstm_b_1
  }
  return variable_mapping


def dis_decoder_seq2seq(hparams):
  assert FLAGS.discriminator_model == 'seq2seq_vd'
  assert hparams.dis_num_layers == 2

  if not FLAGS.dis_share_embedding:
    decoder_embedding = [
        v for v in tf.trainable_variables()
        if v.op.name == 'dis/decoder/rnn/embedding'
    ][0]
  decoder_lstm_w_0 = [
611
612
      v for v in tf.trainable_variables() if v.op.name ==
      'dis/decoder/rnn/multi_rnn_cell/cell_0/basic_lstm_cell/kernel'
Andrew M. Dai's avatar
Andrew M. Dai committed
613
614
  ][0]
  decoder_lstm_b_0 = [
615
616
      v for v in tf.trainable_variables() if v.op.name ==
      'dis/decoder/rnn/multi_rnn_cell/cell_0/basic_lstm_cell/bias'
Andrew M. Dai's avatar
Andrew M. Dai committed
617
618
  ][0]
  decoder_lstm_w_1 = [
619
620
      v for v in tf.trainable_variables() if v.op.name ==
      'dis/decoder/rnn/multi_rnn_cell/cell_1/basic_lstm_cell/kernel'
Andrew M. Dai's avatar
Andrew M. Dai committed
621
622
  ][0]
  decoder_lstm_b_1 = [
623
624
      v for v in tf.trainable_variables() if v.op.name ==
      'dis/decoder/rnn/multi_rnn_cell/cell_1/basic_lstm_cell/bias'
Andrew M. Dai's avatar
Andrew M. Dai committed
625
626
627
628
629
630
631
632
633
634
635
  ][0]

  if FLAGS.data_set == 'ptb':
    model_str = 'Model'
  else:
    model_str = 'model'

  if not FLAGS.dis_share_embedding:
    variable_mapping = {
        str(model_str) + '/embedding':
            decoder_embedding,
636
        str(model_str) + '/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/kernel':
Andrew M. Dai's avatar
Andrew M. Dai committed
637
            decoder_lstm_w_0,
638
        str(model_str) + '/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/bias':
Andrew M. Dai's avatar
Andrew M. Dai committed
639
            decoder_lstm_b_0,
640
        str(model_str) + '/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/kernel':
Andrew M. Dai's avatar
Andrew M. Dai committed
641
            decoder_lstm_w_1,
642
        str(model_str) + '/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/bias':
Andrew M. Dai's avatar
Andrew M. Dai committed
643
644
645
646
            decoder_lstm_b_1
    }
  else:
    variable_mapping = {
647
        str(model_str) + '/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/kernel':
Andrew M. Dai's avatar
Andrew M. Dai committed
648
            decoder_lstm_w_0,
649
        str(model_str) + '/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/bias':
Andrew M. Dai's avatar
Andrew M. Dai committed
650
            decoder_lstm_b_0,
651
        str(model_str) + '/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/kernel':
Andrew M. Dai's avatar
Andrew M. Dai committed
652
            decoder_lstm_w_1,
653
        str(model_str) + '/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/bias':
Andrew M. Dai's avatar
Andrew M. Dai committed
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
            decoder_lstm_b_1,
    }
  return variable_mapping


def dis_seq2seq_vd(hparams):
  assert FLAGS.discriminator_model == 'seq2seq_vd'
  assert hparams.dis_num_layers == 2

  if not FLAGS.dis_share_embedding:
    decoder_embedding = [
        v for v in tf.trainable_variables()
        if v.op.name == 'dis/decoder/rnn/embedding'
    ][0]

  ## Encoder variables.
  encoder_lstm_w_0 = [
671
672
      v for v in tf.trainable_variables() if v.op.name ==
      'dis/encoder/rnn/multi_rnn_cell/cell_0/basic_lstm_cell/kernel'
Andrew M. Dai's avatar
Andrew M. Dai committed
673
674
  ][0]
  encoder_lstm_b_0 = [
675
676
      v for v in tf.trainable_variables() if v.op.name ==
      'dis/encoder/rnn/multi_rnn_cell/cell_0/basic_lstm_cell/bias'
Andrew M. Dai's avatar
Andrew M. Dai committed
677
678
  ][0]
  encoder_lstm_w_1 = [
679
680
      v for v in tf.trainable_variables() if v.op.name ==
      'dis/encoder/rnn/multi_rnn_cell/cell_1/basic_lstm_cell/kernel'
Andrew M. Dai's avatar
Andrew M. Dai committed
681
682
  ][0]
  encoder_lstm_b_1 = [
683
684
      v for v in tf.trainable_variables() if v.op.name ==
      'dis/encoder/rnn/multi_rnn_cell/cell_1/basic_lstm_cell/bias'
Andrew M. Dai's avatar
Andrew M. Dai committed
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
  ][0]

  ## Attention.
  if FLAGS.attention_option is not None:
    decoder_attention_keys = [
        v for v in tf.trainable_variables()
        if v.op.name == 'dis/decoder/attention_keys/weights'
    ][0]
    decoder_attention_construct_weights = [
        v for v in tf.trainable_variables()
        if v.op.name == 'dis/decoder/rnn/attention_construct/weights'
    ][0]

  ## Decoder.
  decoder_lstm_w_0 = [
700
701
      v for v in tf.trainable_variables() if v.op.name ==
      'dis/decoder/rnn/multi_rnn_cell/cell_0/basic_lstm_cell/kernel'
Andrew M. Dai's avatar
Andrew M. Dai committed
702
703
  ][0]
  decoder_lstm_b_0 = [
704
705
      v for v in tf.trainable_variables() if v.op.name ==
      'dis/decoder/rnn/multi_rnn_cell/cell_0/basic_lstm_cell/bias'
Andrew M. Dai's avatar
Andrew M. Dai committed
706
707
  ][0]
  decoder_lstm_w_1 = [
708
709
      v for v in tf.trainable_variables() if v.op.name ==
      'dis/decoder/rnn/multi_rnn_cell/cell_1/basic_lstm_cell/kernel'
Andrew M. Dai's avatar
Andrew M. Dai committed
710
711
  ][0]
  decoder_lstm_b_1 = [
712
713
      v for v in tf.trainable_variables() if v.op.name ==
      'dis/decoder/rnn/multi_rnn_cell/cell_1/basic_lstm_cell/bias'
Andrew M. Dai's avatar
Andrew M. Dai committed
714
715
716
717
  ][0]

  # Standard variable mappings.
  variable_mapping = {
718
      'gen/encoder/rnn/multi_rnn_cell/cell_0/basic_lstm_cell/kernel':
Andrew M. Dai's avatar
Andrew M. Dai committed
719
          encoder_lstm_w_0,
720
      'gen/encoder/rnn/multi_rnn_cell/cell_0/basic_lstm_cell/bias':
Andrew M. Dai's avatar
Andrew M. Dai committed
721
          encoder_lstm_b_0,
722
      'gen/encoder/rnn/multi_rnn_cell/cell_1/basic_lstm_cell/kernel':
Andrew M. Dai's avatar
Andrew M. Dai committed
723
          encoder_lstm_w_1,
724
      'gen/encoder/rnn/multi_rnn_cell/cell_1/basic_lstm_cell/bias':
Andrew M. Dai's avatar
Andrew M. Dai committed
725
          encoder_lstm_b_1,
726
      'gen/decoder/rnn/multi_rnn_cell/cell_0/basic_lstm_cell/kernel':
Andrew M. Dai's avatar
Andrew M. Dai committed
727
          decoder_lstm_w_0,
728
      'gen/decoder/rnn/multi_rnn_cell/cell_0/basic_lstm_cell/bias':
Andrew M. Dai's avatar
Andrew M. Dai committed
729
          decoder_lstm_b_0,
730
      'gen/decoder/rnn/multi_rnn_cell/cell_1/basic_lstm_cell/kernel':
Andrew M. Dai's avatar
Andrew M. Dai committed
731
          decoder_lstm_w_1,
732
      'gen/decoder/rnn/multi_rnn_cell/cell_1/basic_lstm_cell/bias':
Andrew M. Dai's avatar
Andrew M. Dai committed
733
734
735
736
737
738
739
740
741
742
743
744
745
          decoder_lstm_b_1
  }

  # Optional variable mappings.
  if not FLAGS.dis_share_embedding:
    variable_mapping['gen/decoder/rnn/embedding'] = decoder_embedding
  if FLAGS.attention_option is not None:
    variable_mapping[
        'gen/decoder/attention_keys/weights'] = decoder_attention_keys
    variable_mapping[
        'gen/decoder/rnn/attention_construct/weights'] = decoder_attention_construct_weights

  return variable_mapping