common.py 10.9 KB
Newer Older
yukun's avatar
yukun committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Provides flags that are common to scripts.

Common flags from train/eval/vis/export_model.py are collected in this script.
"""
import collections
20
import copy
21
import json
yukun's avatar
yukun committed
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import tensorflow as tf

flags = tf.app.flags

# Flags for input preprocessing.

flags.DEFINE_integer('min_resize_value', None,
                     'Desired size of the smaller image side.')

flags.DEFINE_integer('max_resize_value', None,
                     'Maximum allowed size of the larger image side.')

flags.DEFINE_integer('resize_factor', None,
                     'Resized dimensions are multiple of factor plus one.')

37
38
39
flags.DEFINE_boolean('keep_aspect_ratio', True,
                     'Keep aspect ratio after resizing or not.')

yukun's avatar
yukun committed
40
41
42
43
44
45
# Model dependent flags.

flags.DEFINE_integer('logits_kernel_size', 1,
                     'The kernel size for the convolutional kernel that '
                     'generates logits.')

46
# When using 'mobilent_v2', we set atrous_rates = decoder_output_stride = None.
47
48
49
50
# When using 'xception_65' or 'resnet_v1' model variants, we set
# atrous_rates = [6, 12, 18] (output stride 16) and decoder_output_stride = 4.
# See core/feature_extractor.py for supported model variants.
flags.DEFINE_string('model_variant', 'mobilenet_v2', 'DeepLab model variant.')
yukun's avatar
yukun committed
51
52
53
54
55
56
57

flags.DEFINE_multi_float('image_pyramid', None,
                         'Input scales for multi-scale feature extraction.')

flags.DEFINE_boolean('add_image_level_feature', True,
                     'Add image level feature.')

58
flags.DEFINE_list(
59
60
61
62
63
    'image_pooling_crop_size', None,
    'Image pooling crop size [height, width] used in the ASPP module. When '
    'value is None, the model performs image pooling with "crop_size". This'
    'flag is useful when one likes to use different image pooling sizes.')

64
65
66
67
flags.DEFINE_list(
    'image_pooling_stride', '1,1',
    'Image pooling stride [height, width] used in the ASPP image pooling. ')

yukun's avatar
yukun committed
68
69
70
71
72
73
flags.DEFINE_boolean('aspp_with_batch_norm', True,
                     'Use batch norm parameters for ASPP or not.')

flags.DEFINE_boolean('aspp_with_separable_conv', True,
                     'Use separable convolution for ASPP or not.')

74
75
# Defaults to None. Set multi_grid = [1, 2, 4] when using provided
# 'resnet_v1_{50,101}_beta' checkpoints.
yukun's avatar
yukun committed
76
77
78
flags.DEFINE_multi_integer('multi_grid', None,
                           'Employ a hierarchy of atrous rates for ResNet.')

79
80
81
82
flags.DEFINE_float('depth_multiplier', 1.0,
                   'Multiplier for the depth (number of channels) for all '
                   'convolution ops used in MobileNet.')

83
84
85
86
flags.DEFINE_integer('divisible_by', None,
                     'An integer that ensures the layer # channels are '
                     'divisible by this value. Used in MobileNet.')

87
88
# For `xception_65`, use decoder_output_stride = 4. For `mobilenet_v2`, use
# decoder_output_stride = None.
89
90
91
92
93
94
flags.DEFINE_list('decoder_output_stride', None,
                  'Comma-separated list of strings with the number specifying '
                  'output stride of low-level features at each network level.'
                  'Current semantic segmentation implementation assumes at '
                  'most one output stride (i.e., either None or a list with '
                  'only one element.')
yukun's avatar
yukun committed
95
96
97
98
99
100
101

flags.DEFINE_boolean('decoder_use_separable_conv', True,
                     'Employ separable convolution for decoder or not.')

flags.DEFINE_enum('merge_method', 'max', ['max', 'avg'],
                  'Scheme to merge multi scale features.')

102
103
104
flags.DEFINE_boolean(
    'prediction_with_upsampled_logits', True,
    'When performing prediction, there are two options: (1) bilinear '
105
106
    'upsampling the logits followed by softmax, or (2) softmax followed by '
    'bilinear upsampling.')
107

108
109
110
111
112
flags.DEFINE_string(
    'dense_prediction_cell_json',
    '',
    'A JSON file that specifies the dense prediction cell.')

113
114
115
116
flags.DEFINE_integer(
    'nas_stem_output_num_conv_filters', 20,
    'Number of filters of the stem output tensor in NAS models.')

117
118
119
120
121
122
flags.DEFINE_bool('nas_use_classification_head', False,
                  'Use image classification head for NAS model variants.')

flags.DEFINE_bool('nas_remove_os32_stride', False,
                  'Remove the stride in the output stride 32 branch.')

123
124
125
126
flags.DEFINE_bool('use_bounded_activation', False,
                  'Whether or not to use bounded activations. Bounded '
                  'activations better lend themselves to quantized inference.')

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
flags.DEFINE_boolean('aspp_with_concat_projection', True,
                     'ASPP with concat projection.')

flags.DEFINE_boolean('aspp_with_squeeze_and_excitation', False,
                     'ASPP with squeeze and excitation.')

flags.DEFINE_integer('aspp_convs_filters', 256, 'ASPP convolution filters.')

flags.DEFINE_boolean('decoder_use_sum_merge', False,
                     'Decoder uses simply sum merge.')

flags.DEFINE_integer('decoder_filters', 256, 'Decoder filters.')

flags.DEFINE_boolean('decoder_output_is_logits', False,
                     'Use decoder output as logits or not.')

flags.DEFINE_boolean('image_se_uses_qsigmoid', False, 'Use q-sigmoid.')

flags.DEFINE_multi_float(
    'label_weights', None,
    'A list of label weights, each element represents the weight for the label '
    'of its index, for example, label_weights = [0.1, 0.5] means the weight '
    'for label 0 is 0.1 and the weight for label 1 is 0.5. If set as None, all '
    'the labels have the same weight 1.0.')

flags.DEFINE_float('batch_norm_decay', 0.9997, 'Batchnorm decay.')

yukun's avatar
yukun committed
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
FLAGS = flags.FLAGS

# Constants

# Perform semantic segmentation predictions.
OUTPUT_TYPE = 'semantic'

# Semantic segmentation item names.
LABELS_CLASS = 'labels_class'
IMAGE = 'image'
HEIGHT = 'height'
WIDTH = 'width'
IMAGE_NAME = 'image_name'
LABEL = 'label'
ORIGINAL_IMAGE = 'original_image'

# Test set name.
TEST_SET = 'test'

173

yukun's avatar
yukun committed
174
175
176
177
178
179
class ModelOptions(
    collections.namedtuple('ModelOptions', [
        'outputs_to_num_classes',
        'crop_size',
        'atrous_rates',
        'output_stride',
180
        'preprocessed_images_dtype',
yukun's avatar
yukun committed
181
182
        'merge_method',
        'add_image_level_feature',
183
        'image_pooling_crop_size',
184
        'image_pooling_stride',
yukun's avatar
yukun committed
185
186
187
188
189
190
        'aspp_with_batch_norm',
        'aspp_with_separable_conv',
        'multi_grid',
        'decoder_output_stride',
        'decoder_use_separable_conv',
        'logits_kernel_size',
191
192
        'model_variant',
        'depth_multiplier',
193
194
        'divisible_by',
        'prediction_with_upsampled_logits',
195
        'dense_prediction_cell_config',
196
197
198
199
200
201
202
203
204
205
206
207
        'nas_architecture_options',
        'use_bounded_activation',
        'aspp_with_concat_projection',
        'aspp_with_squeeze_and_excitation',
        'aspp_convs_filters',
        'decoder_use_sum_merge',
        'decoder_filters',
        'decoder_output_is_logits',
        'image_se_uses_qsigmoid',
        'label_weights',
        'sync_batch_norm_method',
        'batch_norm_decay',
yukun's avatar
yukun committed
208
209
210
211
212
213
214
215
216
    ])):
  """Immutable class to hold model options."""

  __slots__ = ()

  def __new__(cls,
              outputs_to_num_classes,
              crop_size=None,
              atrous_rates=None,
217
218
              output_stride=8,
              preprocessed_images_dtype=tf.float32):
yukun's avatar
yukun committed
219
220
221
222
223
224
225
226
227
    """Constructor to set default values.

    Args:
      outputs_to_num_classes: A dictionary from output type to the number of
        classes. For example, for the task of semantic segmentation with 21
        semantic classes, we would have outputs_to_num_classes['semantic'] = 21.
      crop_size: A tuple [crop_height, crop_width].
      atrous_rates: A list of atrous convolution rates for ASPP.
      output_stride: The ratio of input to output spatial resolution.
228
      preprocessed_images_dtype: The type after the preprocessing function.
yukun's avatar
yukun committed
229
230
231
232

    Returns:
      A new ModelOptions instance.
    """
233
234
235
236
    dense_prediction_cell_config = None
    if FLAGS.dense_prediction_cell_json:
      with tf.gfile.Open(FLAGS.dense_prediction_cell_json, 'r') as f:
        dense_prediction_cell_config = json.load(f)
237
238
239
240
241
242
243
244
245
246
247
248
249
    decoder_output_stride = None
    if FLAGS.decoder_output_stride:
      decoder_output_stride = [
          int(x) for x in FLAGS.decoder_output_stride]
      if sorted(decoder_output_stride, reverse=True) != decoder_output_stride:
        raise ValueError('Decoder output stride need to be sorted in the '
                         'descending order.')
    image_pooling_crop_size = None
    if FLAGS.image_pooling_crop_size:
      image_pooling_crop_size = [int(x) for x in FLAGS.image_pooling_crop_size]
    image_pooling_stride = [1, 1]
    if FLAGS.image_pooling_stride:
      image_pooling_stride = [int(x) for x in FLAGS.image_pooling_stride]
250
251
252
253
254
255
256
257
258
    label_weights = FLAGS.label_weights
    if label_weights is None:
      label_weights = 1.0
    nas_architecture_options = {
        'nas_stem_output_num_conv_filters': (
            FLAGS.nas_stem_output_num_conv_filters),
        'nas_use_classification_head': FLAGS.nas_use_classification_head,
        'nas_remove_os32_stride': FLAGS.nas_remove_os32_stride,
    }
yukun's avatar
yukun committed
259
260
    return super(ModelOptions, cls).__new__(
        cls, outputs_to_num_classes, crop_size, atrous_rates, output_stride,
261
262
        preprocessed_images_dtype,
        FLAGS.merge_method,
263
264
265
266
        FLAGS.add_image_level_feature,
        image_pooling_crop_size,
        image_pooling_stride,
        FLAGS.aspp_with_batch_norm,
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
        FLAGS.aspp_with_separable_conv,
        FLAGS.multi_grid,
        decoder_output_stride,
        FLAGS.decoder_use_separable_conv,
        FLAGS.logits_kernel_size,
        FLAGS.model_variant,
        FLAGS.depth_multiplier,
        FLAGS.divisible_by,
        FLAGS.prediction_with_upsampled_logits,
        dense_prediction_cell_config,
        nas_architecture_options,
        FLAGS.use_bounded_activation,
        FLAGS.aspp_with_concat_projection,
        FLAGS.aspp_with_squeeze_and_excitation,
        FLAGS.aspp_convs_filters,
        FLAGS.decoder_use_sum_merge,
        FLAGS.decoder_filters,
        FLAGS.decoder_output_is_logits,
        FLAGS.image_se_uses_qsigmoid,
        label_weights,
        'None',
        FLAGS.batch_norm_decay)
289
290
291
292
293

  def __deepcopy__(self, memo):
    return ModelOptions(copy.deepcopy(self.outputs_to_num_classes),
                        self.crop_size,
                        self.atrous_rates,
294
295
                        self.output_stride,
                        self.preprocessed_images_dtype)