model_test.py 10.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Tests for the model."""

import numpy as np
import string
import tensorflow as tf
from tensorflow.contrib import slim

import model
import data_provider


def create_fake_charset(num_char_classes):
  charset = {}
29
  for i in range(num_char_classes):
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
    charset[i] = string.printable[i % len(string.printable)]
  return charset


class ModelTest(tf.test.TestCase):
  def setUp(self):
    tf.test.TestCase.setUp(self)

    self.rng = np.random.RandomState([11, 23, 50])

    self.batch_size = 4
    self.image_width = 600
    self.image_height = 30
    self.seq_length = 40
    self.num_char_classes = 72
    self.null_code = 62
    self.num_views = 4

    feature_size = 288
    self.conv_tower_shape = (self.batch_size, 1, 72, feature_size)
    self.features_shape = (self.batch_size, self.seq_length, feature_size)
    self.chars_logit_shape = (self.batch_size, self.seq_length,
                              self.num_char_classes)
    self.length_logit_shape = (self.batch_size, self.seq_length + 1)

    self.initialize_fakes()

  def initialize_fakes(self):
    self.images_shape = (self.batch_size, self.image_height, self.image_width,
                         3)
    self.fake_images = tf.constant(
        self.rng.randint(low=0, high=255,
                         size=self.images_shape).astype('float32'),
        name='input_node')
Alexander Gorban's avatar
Alexander Gorban committed
64
65
66
    self.fake_conv_tower_np = self.rng.randn(
        *self.conv_tower_shape).astype('float32')
    self.fake_conv_tower = tf.constant(self.fake_conv_tower_np)
67
68
69
70
71
72
73
74
    self.fake_logits = tf.constant(
        self.rng.randn(*self.chars_logit_shape).astype('float32'))
    self.fake_labels = tf.constant(
        self.rng.randint(
            low=0,
            high=self.num_char_classes,
            size=(self.batch_size, self.seq_length)).astype('int64'))

75
  def create_model(self, charset=None):
76
    return model.Model(
77
78
        self.num_char_classes, self.seq_length, num_views=4, null_code=62,
        charset=charset)
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

  def test_char_related_shapes(self):
    ocr_model = self.create_model()
    with self.test_session() as sess:
      endpoints_tf = ocr_model.create_base(
          images=self.fake_images, labels_one_hot=None)

      sess.run(tf.global_variables_initializer())
      endpoints = sess.run(endpoints_tf)

      self.assertEqual((self.batch_size, self.seq_length,
                        self.num_char_classes), endpoints.chars_logit.shape)
      self.assertEqual((self.batch_size, self.seq_length,
                        self.num_char_classes), endpoints.chars_log_prob.shape)
      self.assertEqual((self.batch_size, self.seq_length),
                       endpoints.predicted_chars.shape)
      self.assertEqual((self.batch_size, self.seq_length),
                       endpoints.predicted_scores.shape)

  def test_predicted_scores_are_within_range(self):
    ocr_model = self.create_model()

    _, _, scores = ocr_model.char_predictions(self.fake_logits)
    with self.test_session() as sess:
      scores_np = sess.run(scores)

    values_in_range = (scores_np >= 0.0) & (scores_np <= 1.0)
    self.assertTrue(
        np.all(values_in_range),
        msg=('Scores contains out of the range values %s' %
             scores_np[np.logical_not(values_in_range)]))

  def test_conv_tower_shape(self):
    with self.test_session() as sess:
      ocr_model = self.create_model()
      conv_tower = ocr_model.conv_tower_fn(self.fake_images)

      sess.run(tf.global_variables_initializer())
      conv_tower_np = sess.run(conv_tower)

      self.assertEqual(self.conv_tower_shape, conv_tower_np.shape)

  def test_model_size_less_then1_gb(self):
    # NOTE: Actual amount of memory occupied my TF during training will be at
    # least 4X times bigger because of space need to store original weights,
    # updates, gradients and variances. It also depends on the type of used
    # optimizer.
    ocr_model = self.create_model()
    ocr_model.create_base(images=self.fake_images, labels_one_hot=None)
    with self.test_session() as sess:
129
      tfprof_root = tf.profiler.profile(
130
          sess.graph,
131
          options=tf.profiler.ProfileOptionBuilder.trainable_variables_parameter())
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

      model_size_bytes = 4 * tfprof_root.total_parameters
      self.assertLess(model_size_bytes, 1 * 2**30)

  def test_create_summaries_is_runnable(self):
    ocr_model = self.create_model()
    data = data_provider.InputEndpoints(
        images=self.fake_images,
        images_orig=self.fake_images,
        labels=self.fake_labels,
        labels_one_hot=slim.one_hot_encoding(self.fake_labels,
                                             self.num_char_classes))
    endpoints = ocr_model.create_base(
        images=self.fake_images, labels_one_hot=None)
    charset = create_fake_charset(self.num_char_classes)
    summaries = ocr_model.create_summaries(
        data, endpoints, charset, is_training=False)
    with self.test_session() as sess:
      sess.run(tf.global_variables_initializer())
      sess.run(tf.local_variables_initializer())
      tf.tables_initializer().run()
      sess.run(summaries)  # just check it is runnable

  def test_sequence_loss_function_without_label_smoothing(self):
    model = self.create_model()
    model.set_mparam('sequence_loss_fn', label_smoothing=0)

    loss = model.sequence_loss_fn(self.fake_logits, self.fake_labels)
    with self.test_session() as sess:
      loss_np = sess.run(loss)

    # This test checks that the loss function is 'runnable'.
    self.assertEqual(loss_np.shape, tuple())

Alexander Gorban's avatar
Alexander Gorban committed
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
  def encode_coordinates_alt(self, net):
    """An alternative implemenation for the encoding coordinates.

    Args:
      net: a tensor of shape=[batch_size, height, width, num_features]

    Returns:
      a list of tensors with encoded image coordinates in them.
    """
    batch_size, h, w, _ = net.shape.as_list()
    h_loc = [
      tf.tile(
          tf.reshape(
              tf.contrib.layers.one_hot_encoding(
                  tf.constant([i]), num_classes=h), [h, 1]), [1, w])
181
      for i in range(h)
Alexander Gorban's avatar
Alexander Gorban committed
182
183
184
185
186
    ]
    h_loc = tf.concat([tf.expand_dims(t, 2) for t in h_loc], 2)
    w_loc = [
      tf.tile(
          tf.contrib.layers.one_hot_encoding(tf.constant([i]), num_classes=w),
187
          [h, 1]) for i in range(w)
Alexander Gorban's avatar
Alexander Gorban committed
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
    ]
    w_loc = tf.concat([tf.expand_dims(t, 2) for t in w_loc], 2)
    loc = tf.concat([h_loc, w_loc], 2)
    loc = tf.tile(tf.expand_dims(loc, 0), [batch_size, 1, 1, 1])
    return tf.concat([net, loc], 3)

  def test_encoded_coordinates_have_correct_shape(self):
    model = self.create_model()
    model.set_mparam('encode_coordinates_fn', enabled=True)
    conv_w_coords_tf = model.encode_coordinates_fn(self.fake_conv_tower)

    with self.test_session() as sess:
      conv_w_coords = sess.run(conv_w_coords_tf)

    batch_size, height, width, feature_size = self.conv_tower_shape
    self.assertEqual(conv_w_coords.shape, (batch_size, height, width,
                                           feature_size + height + width))

  def test_disabled_coordinate_encoding_returns_features_unchanged(self):
    model = self.create_model()
    model.set_mparam('encode_coordinates_fn', enabled=False)
    conv_w_coords_tf = model.encode_coordinates_fn(self.fake_conv_tower)

    with self.test_session() as sess:
      conv_w_coords = sess.run(conv_w_coords_tf)

    self.assertAllEqual(conv_w_coords, self.fake_conv_tower_np)

  def test_coordinate_encoding_is_correct_for_simple_example(self):
    shape = (1, 2, 3, 4)  # batch_size, height, width, feature_size
    fake_conv_tower = tf.constant(2 * np.ones(shape), dtype=tf.float32)
    model = self.create_model()
    model.set_mparam('encode_coordinates_fn', enabled=True)
    conv_w_coords_tf = model.encode_coordinates_fn(fake_conv_tower)

    with self.test_session() as sess:
      conv_w_coords = sess.run(conv_w_coords_tf)

    # Original features
    self.assertAllEqual(conv_w_coords[0, :, :, :4],
                        [[[2, 2, 2, 2], [2, 2, 2, 2], [2, 2, 2, 2]],
                         [[2, 2, 2, 2], [2, 2, 2, 2], [2, 2, 2, 2]]])
    # Encoded coordinates
    self.assertAllEqual(conv_w_coords[0, :, :, 4:],
                        [[[1, 0, 1, 0, 0], [1, 0, 0, 1, 0], [1, 0, 0, 0, 1]],
                         [[0, 1, 1, 0, 0], [0, 1, 0, 1, 0], [0, 1, 0, 0, 1]]])

  def test_alt_implementation_of_coordinate_encoding_returns_same_values(self):
    model = self.create_model()
    model.set_mparam('encode_coordinates_fn', enabled=True)
    conv_w_coords_tf = model.encode_coordinates_fn(self.fake_conv_tower)
    conv_w_coords_alt_tf = self.encode_coordinates_alt(self.fake_conv_tower)

    with self.test_session() as sess:
      conv_w_coords_tf, conv_w_coords_alt_tf = sess.run(
          [conv_w_coords_tf, conv_w_coords_alt_tf])

    self.assertAllEqual(conv_w_coords_tf, conv_w_coords_alt_tf)

247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
  def test_predicted_text_has_correct_shape_w_charset(self):
    charset = create_fake_charset(self.num_char_classes)
    ocr_model = self.create_model(charset=charset)

    with self.test_session() as sess:
      endpoints_tf = ocr_model.create_base(
          images=self.fake_images, labels_one_hot=None)

      sess.run(tf.global_variables_initializer())
      tf.tables_initializer().run()
      endpoints = sess.run(endpoints_tf)

      self.assertEqual(endpoints.predicted_text.shape, (self.batch_size,))
      self.assertEqual(len(endpoints.predicted_text[0]), self.seq_length)

262
263
264
265
266
267
268
269
270
271
272
273

class CharsetMapperTest(tf.test.TestCase):
  def test_text_corresponds_to_ids(self):
    charset = create_fake_charset(36)
    ids = tf.constant(
        [[17, 14, 21, 21, 24], [32, 24, 27, 21, 13]], dtype=tf.int64)
    charset_mapper = model.CharsetMapper(charset)

    with self.test_session() as sess:
      tf.tables_initializer().run()
      text = sess.run(charset_mapper.get_text(ids))

274
    self.assertAllEqual(text, [b'hello', b'world'])
275
276
277
278


if __name__ == '__main__':
  tf.test.main()