mosaic_head.py 11 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Contains definitions of segmentation head of the MOSAIC model."""
from typing import Any, Dict, List, Mapping, Optional, Tuple, Union

import tensorflow as tf

from official.modeling import tf_utils
from official.projects.mosaic.modeling import mosaic_blocks


@tf.keras.utils.register_keras_serializable(package='Vision')
class MosaicDecoderHead(tf.keras.layers.Layer):
  """Creates a MOSAIC decoder in segmentation head.

  Reference:
   [MOSAIC: Mobile Segmentation via decoding Aggregated Information and encoded
   Context](https://arxiv.org/pdf/2112.11623.pdf)
  """

  def __init__(
      self,
      num_classes: int,
      decoder_input_levels: Optional[List[str]] = None,
      decoder_stage_merge_styles: Optional[List[str]] = None,
      decoder_filters: Optional[List[int]] = None,
      decoder_projected_filters: Optional[List[int]] = None,
      encoder_end_level: Optional[int] = 4,
      use_additional_classifier_layer: bool = False,
      classifier_kernel_size: int = 1,
      activation: str = 'relu',
      use_sync_bn: bool = False,
      batchnorm_momentum: float = 0.99,
      batchnorm_epsilon: float = 0.001,
      kernel_initializer: str = 'GlorotUniform',
      kernel_regularizer: Optional[tf.keras.regularizers.Regularizer] = None,
      interpolation: str = 'bilinear',
      bias_regularizer: Optional[tf.keras.regularizers.Regularizer] = None,
      **kwargs):
    """Initializes a MOSAIC segmentation head.

    Args:
      num_classes: An `int` number of mask classification categories. The number
        of classes does not include background class.
      decoder_input_levels: A list of `str` specifying additional
        input levels from the backbone outputs for mask refinement in decoder.
      decoder_stage_merge_styles: A list of `str` specifying the merge style at
        each stage of the decoder, merge styles can be 'concat_merge' or
        'sum_merge'.
      decoder_filters: A list of integers specifying the number of channels used
        at each decoder stage. Note: this only has affects if the decoder merge
        style is 'concat_merge'.
      decoder_projected_filters: A list of integers specifying the number of
        projected channels at the end of each decoder stage.
      encoder_end_level: An optional integer specifying the output level of the
        encoder stage, which is used if the input from the encoder to the
        decoder head is a dictionary.
      use_additional_classifier_layer: A `bool` specifying whether to use an
        additional classifier layer or not. It must be True if the final decoder
        projected filters does not match the `num_classes`.
      classifier_kernel_size: An `int` number to specify the kernel size of the
        classifier layer.
      activation: A `str` that indicates which activation is used, e.g. 'relu',
        'swish', etc.
      use_sync_bn: A `bool` that indicates whether to use synchronized batch
        normalization across different replicas.
      batchnorm_momentum: A `float` of normalization momentum for the moving
        average.
      batchnorm_epsilon: A `float` added to variance to avoid dividing by zero.
      kernel_initializer: Kernel initializer for conv layers. Defaults to
        `glorot_uniform`.
      kernel_regularizer: A `tf.keras.regularizers.Regularizer` object for
        Conv2D. Default is None.
      interpolation: The interpolation method for upsampling. Defaults to
        `bilinear`.
      bias_regularizer: A `tf.keras.regularizers.Regularizer` object for Conv2D.
      **kwargs: Additional keyword arguments to be passed.
    """
    super(MosaicDecoderHead, self).__init__(**kwargs)

    # Assuming 'decoder_input_levels' are sorted in descending order and the
    # other setting are listed in the order according to 'decoder_input_levels'.
    if decoder_input_levels is None:
      decoder_input_levels = ['3', '2']
    if decoder_stage_merge_styles is None:
      decoder_stage_merge_styles = ['concat_merge', 'sum_merge']
    if decoder_filters is None:
      decoder_filters = [64, 64]
    if decoder_projected_filters is None:
      decoder_projected_filters = [32, 32]
    self._decoder_input_levels = decoder_input_levels
    self._decoder_stage_merge_styles = decoder_stage_merge_styles
    self._decoder_filters = decoder_filters
    self._decoder_projected_filters = decoder_projected_filters
    if (len(decoder_input_levels) != len(decoder_stage_merge_styles) or
        len(decoder_input_levels) != len(decoder_filters) or
        len(decoder_input_levels) != len(decoder_projected_filters)):
      raise ValueError('The number of Decoder inputs and settings must match.')
    self._merge_stages = []
    for (stage_merge_style, decoder_filter,
         decoder_projected_filter) in zip(decoder_stage_merge_styles,
                                          decoder_filters,
                                          decoder_projected_filters):
      if stage_merge_style == 'concat_merge':
        concat_merge_stage = mosaic_blocks.DecoderConcatMergeBlock(
            decoder_internal_depth=decoder_filter,
            decoder_projected_depth=decoder_projected_filter,
            output_size=(0, 0),
            use_sync_bn=use_sync_bn,
            batchnorm_momentum=batchnorm_momentum,
            batchnorm_epsilon=batchnorm_epsilon,
            activation=activation,
            kernel_initializer=kernel_initializer,
            kernel_regularizer=kernel_regularizer,
            interpolation=interpolation)
        self._merge_stages.append(concat_merge_stage)
      elif stage_merge_style == 'sum_merge':
        sum_merge_stage = mosaic_blocks.DecoderSumMergeBlock(
            decoder_projected_depth=decoder_projected_filter,
            output_size=(0, 0),
            use_sync_bn=use_sync_bn,
            batchnorm_momentum=batchnorm_momentum,
            batchnorm_epsilon=batchnorm_epsilon,
            activation=activation,
            kernel_initializer=kernel_initializer,
            kernel_regularizer=kernel_regularizer,
            interpolation=interpolation)
        self._merge_stages.append(sum_merge_stage)
      else:
        raise ValueError(
            'A stage merge style in MOSAIC Decoder can only be concat_merge '
            'or sum_merge.')

    # Concat merge or sum merge does not require an additional classifer layer
    # unless the final decoder projected filter does not match num_classes.
    final_decoder_projected_filter = decoder_projected_filters[-1]
    if (final_decoder_projected_filter != num_classes and
        not use_additional_classifier_layer):
      raise ValueError('Additional classifier layer is needed if final decoder '
                       'projected filters does not match num_classes!')
    self._use_additional_classifier_layer = use_additional_classifier_layer
    if use_additional_classifier_layer:
      # This additional classification layer uses different kernel
      # initializers and bias compared to earlier blocks.
      self._pixelwise_classifier = tf.keras.layers.Conv2D(
          name='pixelwise_classifier',
          filters=num_classes,
          kernel_size=classifier_kernel_size,
          padding='same',
          bias_initializer=tf.zeros_initializer(),
          kernel_initializer=tf.keras.initializers.RandomNormal(stddev=0.01),
          kernel_regularizer=kernel_regularizer,
          bias_regularizer=bias_regularizer,
          use_bias=True)
      self._activation_fn = tf_utils.get_activation(activation)

    self._config_dict = {
        'num_classes': num_classes,
        'decoder_input_levels': decoder_input_levels,
        'decoder_stage_merge_styles': decoder_stage_merge_styles,
        'decoder_filters': decoder_filters,
        'decoder_projected_filters': decoder_projected_filters,
        'encoder_end_level': encoder_end_level,
        'use_additional_classifier_layer': use_additional_classifier_layer,
        'classifier_kernel_size': classifier_kernel_size,
        'activation': activation,
        'use_sync_bn': use_sync_bn,
        'batchnorm_momentum': batchnorm_momentum,
        'batchnorm_epsilon': batchnorm_epsilon,
        'kernel_initializer': kernel_initializer,
        'kernel_regularizer': kernel_regularizer,
        'interpolation': interpolation,
        'bias_regularizer': bias_regularizer
    }

  def call(self,
           inputs: Tuple[Union[tf.Tensor, Mapping[str, tf.Tensor]],
                         Union[tf.Tensor, Mapping[str, tf.Tensor]]],
           training: Optional[bool] = None) -> tf.Tensor:
    """Forward pass of the segmentation head.

    It supports a tuple of 2 elements. Each element is a tensor or a tensor
    dictionary. The first one is the final (low-resolution) encoder endpoints,
    and the second one is higher-resolution backbone endpoints.
    When inputs are tensors, they are from a single level of feature maps.
    When inputs are dictionaries, they contain multiple levels of feature maps,
    where the key is the level/index of feature map.
    Note: 'level' denotes the number of 2x downsampling, defined in backbone.

    Args:
      inputs: A tuple of 2 elements, each element can either be a tensor
        representing feature maps or 1 dictionary of tensors:
        - key: A `str` of the level of the multilevel features.
        - values: A `tf.Tensor` of the feature map tensors.
        The first is encoder endpoints, and the second is backbone endpoints.
      training: a `Boolean` indicating whether it is in `training` mode.
    Returns:
      segmentation mask prediction logits: A `tf.Tensor` representing the
        output logits before the final segmentation mask.
    """

    encoder_outputs = inputs[0]
    backbone_outputs = inputs[1]
    y = encoder_outputs[str(
        self._config_dict['encoder_end_level'])] if isinstance(
            encoder_outputs, dict) else encoder_outputs
    if isinstance(backbone_outputs, dict):
      for level, merge_stage in zip(
          self._decoder_input_levels, self._merge_stages):
        x = backbone_outputs[str(level)]
        y = merge_stage([y, x], training=training)
    else:
      x = backbone_outputs
      y = self._merge_stages[0]([y, x], training=training)

    if self._use_additional_classifier_layer:
      y = self._pixelwise_classifier(y)
      y = self._activation_fn(y)

    return y

  def get_config(self) -> Dict[str, Any]:
    """Returns a config dictionary for initialization from serialization."""
    base_config = super().get_config()
    base_config.update(self._config_dict)
    return base_config

  @classmethod
  def from_config(cls, config: Dict[str, Any]):
    return cls(**config)