load_weights.py 7.07 KB
Newer Older
anivegesana's avatar
anivegesana committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
"""
This file contains the code to load parsed weights that are in the DarkNet
format into TensorFlow layers
"""
import itertools
from tensorflow import keras as ks
from collections import defaultdict
from yolo.modeling.building_blocks import DarkConv
from .config_classes import convCFG


def split_converter(lst, i, j=None):
    if j is None:
        return lst.data[:i], lst.data[i:]
    return lst.data[:i], lst.data[i:j], lst.data[j:]


def interleve_weights(block):
    """merge weights to fit the DarkResnet block style"""
    if len(block) == 0:
        return []
    weights_temp = []
    for layer in block:
        weights = layer.get_weights()
        weights = [tuple(weights[0:3]), tuple(weights[3:])]
        weights_temp.append(weights)
    top, bottom = tuple(zip(*weights_temp))
    weights = list(itertools.chain.from_iterable(top)) + \
        list(itertools.chain.from_iterable(bottom))
    return weights


def get_darknet53_tf_format(net, only_weights=True):
    """convert weights from darknet sequntial to tensorflow weave, Darknet53 Backbone"""
    combo_blocks = []
    for i in range(2):
        layer = net.pop(0)
        combo_blocks.append(layer)
    # ugly code i will document, very tired
    encoder = []
    while len(net) != 0:
        blocks = []
        layer = net.pop(0)
        while layer._type != "shortcut":
            blocks.append(layer)
            layer = net.pop(0)
        encoder.append(blocks)
    new_net = combo_blocks + encoder
    weights = []
    if only_weights:
        for block in new_net:
            if type(block) != list:
                weights.append(block.get_weights())
            else:
                weights.append(interleve_weights(block))
    print("converted/interleved weights for tensorflow format")
    return new_net, weights


def get_tiny_tf_format(encoder):
    weights = []
    for layer in encoder:
        if layer._type != "maxpool":
            weights.append(layer.get_weights())
    return encoder, weights


# DEBUGGING
def print_layer_shape(layer):
    try:
        weights = layer.get_weights()
    except:
        weights = layer
    for item in weights:
        print(item.shape)
    return


def flatten_model(model):
    for layer in model.layers:
        if isinstance(model, ks.Model):
            yield from model.layers
        else:
            yield layer


def set_darknet_weights_head(flat_head, weights_head):
    for layer in flat_head:
        weights = layer.get_weights()
        weight_depth = weights[0].shape[-2]
        for weight in weights_head:
            if weight[0].shape[-2] == weight_depth:
                print(
                    f"loaded weights for layer: head layer with depth {weight_depth}  -> name: {layer.name}",
                    sep='      ',
                    end="\r")
                layer.set_weights(weight)
    return


def set_darknet_weights(model, weights_list, flat_model=None):
    if flat_model == None:
        zip_fill = flatten_model(model)
    else:
        zip_fill = flat_model
    for i, (layer, weights) in enumerate(zip(zip_fill, weights_list)):
        print(f"loaded weights for layer: {i}  -> name: {layer.name}",
              sep='      ',
              end="\r")
        layer.set_weights(weights)
    return


def split_decoder(lst):
    decoder = []
    outputs = []
    for layer in lst:
        if layer._type == 'yolo':
            outputs.append(decoder.pop())
            outputs.append(layer)
        else:
            decoder.append(layer)
    return decoder, outputs


def get_decoder_weights(decoder):
    layers = [[]]
    block = []
    weights = []

    decoder, head = split_decoder(decoder)

    # get decoder weights and group them together
    for i, layer in enumerate(decoder):
        if layer._type == "route" and decoder[i - 1]._type != 'maxpool':
            layers.append(block)
            block = []
        elif (layer._type == "route" and decoder[i - 1]._type
              == "maxpool") or layer._type == "maxpool":
            continue
        elif layer._type == "convolutional":
            block.append(layer)
        else:
            layers.append([])
    if len(block) > 0:
        layers.append(block)

    # interleve weights for blocked layers
    for layer in layers:
        weights.append(interleve_weights(layer))

    # get weights for output detection heads
    head_weights = []
    head_layers = []
    for layer in (head):
        if layer != None and layer._type == "convolutional":
            head_weights.append(layer.get_weights())
            head_layers.append(layer)

    return layers, weights, head_layers, head_weights


def load_weights_backbone(model, net):
    convs = []
    for layer in net:
        if isinstance(layer, convCFG):
            convs.append(layer)

    for layer in model.layers:
        if isinstance(layer, DarkConv):
            cfg = convs.pop(0)
            layer.set_weights(cfg.get_weights())
        else:
            for sublayer in layer.submodules:
                if isinstance(sublayer, DarkConv):
                    cfg = convs.pop(0)
                    sublayer.set_weights(cfg.get_weights())


def load_weights_v4head(model, net):
    convs = []
    for layer in net:
        if isinstance(layer, convCFG):
            convs.append(layer)

    blocks = []
    for layer in model.layers:
        if isinstance(layer, DarkConv):
            blocks.append([layer])
        else:
            block = []
            for sublayer in layer.submodules:
                if isinstance(sublayer, DarkConv):
                    block.append(sublayer)
            if block:
                blocks.append(block)

    # 4 and 0 have the same shape
    remap = [4, 6, 0, 1, 7, 2, 3, 5]
    old_blocks = blocks
    blocks = [old_blocks[i] for i in remap]

    for block in blocks:
        for layer in block:
            cfg = convs.pop(0)
            print(cfg)  #, layer.input_shape)
            layer.set_weights(cfg.get_weights())
        print()

    print(convs)


def load_weights_dnBackbone(backbone, encoder, mtype="darknet53"):
    # get weights for backbone
    if mtype == "DarkNet53":
        encoder, weights_encoder = get_darknet53_tf_format(encoder[:])
    elif mtype == "DarkNetTiny":
        encoder, weights_encoder = get_tiny_tf_format(encoder[:])

    # set backbone weights
    print(
        f"\nno. layers: {len(backbone.layers)}, no. weights: {len(weights_encoder)}"
    )
    set_darknet_weights(backbone, weights_encoder)

    backbone.trainable = False
    print(f"\nsetting backbone.trainable to: {backbone.trainable}\n")
    return


def load_weights_dnHead(head, decoder):
    # get weights for head
    decoder, weights_decoder, head_layers, head_weights = get_decoder_weights(
        decoder)
    # set detection head weights
    print(
        f"\nno. layers: {len(head.layers)}, no. weights: {len(weights_decoder)}"
    )
    flat_full = list(flatten_model(head))
    flat_main = flat_full[:-3]
    flat_head = flat_full[-3:]

    set_darknet_weights(head, weights_decoder, flat_model=flat_main)
    set_darknet_weights_head(flat_head, head_weights)

    head.trainable = False
    print(f"\nsetting head.trainable to: {head.trainable}\n")
    return