config_classes.py 22 KB
Newer Older
anivegesana's avatar
anivegesana committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
"""
This file contains the layers (Config objects) that are used by the Darknet
config file parser.

For more details on the layer types and layer parameters, visit https://github.com/AlexeyAB/darknet/wiki/CFG-Parameters-in-the-different-layers

Currently, the parser is incomplete and we can only guarantee that it works for
models in the YOLO family (YOLOv3 and older).
"""

from abc import ABC, abstractmethod
from dataclasses import dataclass, field
import numpy as np

from typing import Tuple, Sequence, List


class Config(ABC):
    """
    The base class for all layers that are used by the parser. Each subclass
    defines a new layer type. Most nodes correspond to distinct layers that
    appear in the final network. [net] corresponds to the input to the model.

    Each subclass must be a @dataclass and must have the following fields:
    ```{python}
        _type: str = None
        w: int = field(init=True, repr=True, default=0)
        h: int = field(init=True, repr=True, default=0)
        c: int = field(init=True, repr=True, default=0)
    ```

    These fields are used when linking different layers together, but weren't
    included in the Config class due to limitations in the dataclasses package.
    (w, h, c) will correspond to the different input dimensions of a DarkNet
    layer: the width, height, and number of channels.
    """
    @property
    @abstractmethod
    def shape(self) -> Tuple[int, int, int]:
        '''
        Output shape of the layer. The output must be a 3-tuple of ints
        corresponding to the the width, height, and number of channels of the
        output.

        Returns:
            A tuple corresponding to the output shape of the layer.
        '''
        return

    def load_weights(self, files) -> int:
        '''
        Load the weights for the current layer from a file.

        Arguments:
            files: Open IO object for the DarkNet weights file

        Returns:
            the number of bytes read.
        '''
        return 0

    def get_weights(self) -> list:
        '''
        Returns:
            a list of Numpy arrays consisting of all of the weights that
            were loaded from the weights file
        '''
        return []

    @classmethod
    def from_dict(clz, net, layer_dict) -> "Config":
        '''
        Create a layer instance from the previous layer and a dictionary
        containing all of the parameters for the DarkNet layer. This is how
        linking is done by the parser.
        '''
        if 'w' not in layer_dict:
            prevlayer = net[-1]
            l = {
                "w": prevlayer.shape[0],
                "h": prevlayer.shape[1],
                "c": prevlayer.shape[2],
                **layer_dict
            }
        else:
            l = layer_dict
        return clz(**l)

    @abstractmethod
    def to_tf(self, tensors):
        """
        Convert the DarkNet configuration object to a tensor given the previous
        tensors that occoured in the network. This function should also return
        a Keras layer if it has weights.

        Returns:
            if weights: a tuple consisting of the output tensor and Keras layer
            if no weights: the output tensor
        """
        return None


class _LayerBuilder(dict):
    """
    This class defines a registry for the layer builder in the DarkNet weight
    parser. It allows for syntactic sugar when registering Config subclasses to
    the parser.
    """
    def __getitem__(self, key):
        try:
            return super().__getitem__(key)
        except KeyError as e:
            raise KeyError(f"Unknown layer type: {key}") from e

    def register(self, *layer_types: str):
        '''
        Register a parser node (layer) class with the layer builder.
        '''
        def decorator(clz):
            for layer_type in layer_types:
                self[layer_type] = clz
            return clz

        return decorator


layer_builder = _LayerBuilder()


@layer_builder.register('conv', 'convolutional')
@dataclass
class convCFG(Config):
    _type: str = None
    w: int = field(init=True, repr=True, default=0)
    h: int = field(init=True, repr=True, default=0)
    c: int = field(init=True, repr=True, default=0)

    size: int = field(init=True, repr=True, default=0)
    stride: int = field(init=True, repr=True, default=0)
    pad: int = field(init=True, repr=True, default=0)
    filters: int = field(init=True, repr=True, default=0)
    activation: str = field(init=True, repr=False, default='linear')
    groups: int = field(init=True, repr=False, default=1)
    batch_normalize: int = field(init=True, repr=False, default=0)
    dilation: int = field(init=True, repr=False, default=1)

    nweights: int = field(repr=False, default=0)
    biases: np.array = field(repr=False, default=None)  #
    weights: np.array = field(repr=False, default=None)
    scales: np.array = field(repr=False, default=None)
    rolling_mean: np.array = field(repr=False, default=None)
    rolling_variance: np.array = field(repr=False, default=None)

    def __post_init__(self):
        self.pad = (self.size - 1) // 2
        self.nweights = int(
            (self.c / self.groups) * self.filters * self.size * self.size)
        return

    @property
    def shape(self):
        w = len_width(self.w, self.size, self.pad, self.stride)
        h = len_width(self.h, self.size, self.pad, self.stride)
        return (w, h, self.filters)

    def load_weights(self, files):
        self.biases = read_n_floats(self.filters, files)
        bytes_read = self.filters

        if self.batch_normalize == 1:
            self.scales = read_n_floats(self.filters, files)
            self.rolling_mean = read_n_floats(self.filters, files)
            self.rolling_variance = read_n_floats(self.filters, files)
            bytes_read += self.filters * 3

        # used as a guide:
        # https://github.com/thtrieu/darkflow/blob/master/darkflow/dark/convolution.py
        weights = read_n_floats(self.nweights, files)
        self.weights = weights.reshape(self.filters, self.c, self.size,
                                       self.size).transpose([2, 3, 1, 0])
        bytes_read += self.nweights
        return bytes_read * 4

    def get_weights(self, printing=False):
        if printing:
            print(
                "[weights, biases, biases, scales, rolling_mean, rolling_variance]"
            )
        if self.batch_normalize:
            return [
                self.weights,
                self.scales,  #gamma
                self.biases,  #beta
                self.rolling_mean,
                self.rolling_variance
            ]
        else:
            return [self.weights, self.biases]

    def to_tf(self, tensors):
        from official.vision.beta.projects.yolo.modeling.layers.nn_blocks import DarkConv
        layer = DarkConv(
            filters=self.filters,
            kernel_size=(self.size, self.size),
            strides=(self.stride, self.stride),
            padding='same',
            dilation_rate=(self.dilation, self.dilation),
            use_bn=bool(self.batch_normalize),
            activation=activation_function_dn_to_keras_name(self.activation),
        )  # TODO: Where does groups go
        return layer(tensors[-1]), layer

@layer_builder.register('local')
@dataclass
class localCfg(Config):
    # implementation based on:
    # https://github.com/thtrieu/darkflow/blob/master/darkflow/dark/convolution.py
    # l.4-l.25
    _type: str = None
    w: int = field(init=True, repr=True, default=0)
    h: int = field(init=True, repr=True, default=0)
    c: int = field(init=True, repr=True, default=0)

    size: int = field(init=True, repr=True, default=0)
    stride: int = field(init=True, repr=True, default=0)
    pad: int = field(init=True, repr=True, default=0)
    filters: int = field(init=True, repr=True, default=0)
    activation: str = field(init=True, repr=False, default='linear')
    groups: int = field(init=True, repr=False, default=1)

    nweights: int = field(repr=False, default=0)
    weights: np.array = field(repr=False, default=None)
    biases: np.array = field(repr=False, default=None)

    def __post_init__(self):
        self.pad = int(self.pad) * int(self.size / 2) if self.size != 1 else 0

        w = len_width(self.w, self.size, self.pad, self.stride)
        h = len_width(self.h, self.size, self.pad, self.stride)
        self.nweights = int(
            self.filters * self.size * self.size)
        return

    @property
    def shape(self):
        w = len_width(self.w, self.size, self.pad, self.stride)
        h = len_width(self.h, self.size, self.pad, self.stride)
        return (w, h, self.filters)

    def load_weights(self, files):
        w = len_width(self.w, self.size, self.pad, self.stride)
        h = len_width(self.h, self.size, self.pad, self.stride)
        self.biases = read_n_floats(w * h * self.filters, files)

        bytes_read = self.filters * w * h

        weights = read_n_floats(self.nweights, files)
        # self.weights = weights.reshape(self.h * self.w, self.filters, self.c, self.size,
        #                                self.size).transpose([0, 3, 4, 2, 1])
        bytes_read += self.nweights
        return bytes_read * 4

    def get_weights(self, printing=False):
        if printing:
            print(
                "[weights, biases]"
            )
        return [self.weights, self.biases]

    def to_tf(self, tensors):
        from tensorflow.keras.layers import LocallyConnected2D, ZeroPadding2D, LeakyReLU

        zero_pad_layer = ZeroPadding2D(
            padding=self.pad
        )

        if self.activation == "leaky":
            self.activation = LeakyReLU(alpha=0.1)

        local_layer = LocallyConnected2D(
            filters=self.filters,
            kernel_size=(self.size, self.size),
            strides=(self.stride, self.stride),
            padding='valid',  # currently LocallyConnected2D only supports 'valid
            activation=activation_function_dn_to_keras_name(self.activation),
        )

        return local_layer(zero_pad_layer(tensors[-1])), local_layer
        #return local_layer(tensors[-1]), local_layer

@layer_builder.register('shortcut')
@dataclass
class shortcutCFG(Config):
    _type: str = None
    w: int = field(init=True, default=0)
    h: int = field(init=True, default=0)
    c: int = field(init=True, default=0)

    _from: List[int] = field(init=True, default_factory=list)
    activation: str = field(init=True, default='linear')

    @property
    def shape(self):
        return (self.w, self.h, self.c)

    @classmethod
    def from_dict(clz, net, layer_dict):
        '''
        Create a layer instance from the previous layer and a dictionary
        containing all of the parameters for the DarkNet layer. This is how
        linking is done by the parser.
        '''
        _from = layer_dict['from']
        if type(_from) is not tuple:
            _from = (_from, )

        prevlayer = net[-1]
        l = {
            "_type": layer_dict['_type'],
            "w": prevlayer.shape[0],
            "h": prevlayer.shape[1],
            "c": prevlayer.shape[2],
            "_from": _from,
            "activation": layer_dict['activation'],
        }
        return clz(**l)

    def to_tf(self, tensors):
        from tensorflow.keras.layers import add
        from tensorflow.keras.activations import get
        activation = get(activation_function_dn_to_keras_name(self.activation))

        my_tensors = [tensors[-1]]
        for i in self._from:
            my_tensors.append(tensors[i])

        return activation(add(my_tensors))


@layer_builder.register('route')
@dataclass
class routeCFG(Config):
    _type: str = None
    w: int = field(init=True, default=0)
    h: int = field(init=True, default=0)
    c: int = field(init=True, default=0)

    layers: List[int] = field(init=True, default_factory=list)
    groups: int = field(repr=False, default=1)
    group_id: int = field(repr=False, default=0)

    @property
    def shape(self):
        return (self.w, self.h, self.c // self.groups)

    @classmethod
    def from_dict(clz, net, layer_dict):
        # Calculate shape of the route
        layers = layer_dict['layers']
        if type(layers) is tuple:
            layers_iter = iter(layers)
            w, h, c = net[next(layers_iter)].shape
            for l in layers_iter:
                lw, lh, lc = net[l].shape
                if (lw, lh) != (w, h):
                    raise ValueError(
                        f"Width and heights of route layer [#{len(net)}] inputs {layers} do not match.\n   Previous: {(w, h)}\n   New: {(lw, lh)}"
                    )
                c += lc
        else:
            w, h, c = net[layers].shape
            layers = (layers, )
        assert c % layer_dict.get(
            'groups', 1
        ) == 0, "The number of channels must evenly divide among the groups."

        # Create layer
        l = layer_dict.copy()
        l["w"] = w
        l["h"] = h
        l["c"] = c
        l["layers"] = layers
        return clz(**l)

    def to_tf(self, tensors):
        import tensorflow as tf
        from tensorflow.keras.layers import concatenate

        if len(self.layers) == 1:
            stacked = tensors[self.layers[0]]
        else:
            my_tensors = []
            for i in self.layers:
                my_tensors.append(tensors[i])
            stacked = concatenate(my_tensors)

        if self.groups == 1:
            return stacked
        else:
            return tf.split(stacked, self.groups, axis=-1)[self.group_id]


@layer_builder.register('net', 'network')
@dataclass
class netCFG(Config):
    _type: str = None
    w: int = field(init=True, default=0)
    h: int = field(init=True, default=0)
    c: int = field(init=True, default=0)

    @property
    def shape(self):
        return (self.w, self.h, self.c)

    @classmethod
    def from_dict(clz, net, layer_dict):
        assert len(
            net.data
        ) == 0, "A [net] section cannot occour in the middle of a DarkNet model"
        l = {
            "_type": layer_dict["_type"],
            "w": layer_dict["width"],
            "h": layer_dict["height"],
            "c": layer_dict["channels"]
        }
        return clz(**l)

    def to_tf(self, tensors):
        from tensorflow.keras import Input
        return Input(shape=[self.w, self.h, self.c])


@layer_builder.register('yolo')
@dataclass
class yoloCFG(Config):
    _type: str = None
    w: int = field(init=True, default=0)
    h: int = field(init=True, default=0)
    c: int = field(init=True, default=0)

    mask: List[int] = field(init=True, default_factory=list)
    anchors: List[Tuple[int, int]] = field(init=True, default_factory=list)
    scale_x_y: int = field(init=True, default=1)

    @property
    def shape(self):
        return (self.w, self.h, self.c)

    @classmethod
    def from_dict(clz, net, layer_dict):
        prevlayer = net[-1]
        l = {
            "_type": layer_dict['_type'],
            "mask": layer_dict['mask'],
            "anchors": layer_dict['anchors'],
            "w": prevlayer.shape[0],
            "h": prevlayer.shape[1],
            "c": prevlayer.shape[2]
        }
        return clz(**l)

    def to_tf(self, tensors):
        return tensors[-1]  # TODO: Fill out


@layer_builder.register('upsample')
@dataclass
class upsampleCFG(Config):
    _type: str = None
    w: int = field(init=True, default=0)
    h: int = field(init=True, default=0)
    c: int = field(init=True, default=0)

    stride: int = field(init=True, default=2)

    @property
    def shape(self):
        return (self.stride * self.w, self.stride * self.h, self.c)

    def to_tf(self, tensors):
        from tensorflow.keras.layers import UpSampling2D
        return UpSampling2D(size=(self.stride, self.stride))(tensors[-1])


@layer_builder.register('maxpool')
@dataclass
class maxpoolCFG(Config):
    _type: str = None
    w: int = field(init=True, default=0)
    h: int = field(init=True, default=0)
    c: int = field(init=True, default=0)

    stride: int = field(init=True, default=2)
    size: int = field(init=True, default=2)

    @property
    def shape(self):
        pad = 0 if self.stride == 1 else 1
        #print((self.w//self.stride, self.h//self.stride, self.c))
        return (
            self.w // self.stride, self.h // self.stride, self.c
        )  #((self.w - self.size) // self.stride + 2, (self.h - self.size) // self.stride + 2, self.c)

    def to_tf(self, tensors):
        #from tensorflow.nn import max_pool2d
        from tensorflow.keras.layers import MaxPooling2D
        return MaxPooling2D(pool_size=(self.size, self.size),
                            strides=(self.stride, self.stride),
                            padding='same')(tensors[-1])


@layer_builder.register('connected')
@dataclass
class connectedCFG(Config):
    # Used as guide: https://github.com/thtrieu/darkflow/blob/master/darkflow/dark/connected.py
    _type: str = None
    w: int = field(init=True, repr=True, default=0)
    h: int = field(init=True, repr=True, default=0)
    c: int = field(init=True, repr=True, default=0)

    output: int = field(init=True, repr=True, default=1715)
    activation: str = field(init=True, repr=False, default='linear')

    nweights: int = field(repr=False, default=0)
    biases: np.array = field(repr=False, default=None)
    weights: np.array = field(repr=False, default=None)

    def __post_init__(self):
        # number of weights (exlucding bias = input size * output size)
        self.nweights = int(
            self.c * self.w * self.h * self.output)
        return

    @property
    def shape(self):
        return (self.output,)

    def load_weights(self, files):
        self.biases = read_n_floats(self.output, files)
        bytes_read = self.output
        weights = read_n_floats(self.nweights, files)
        #self.weights = weights.reshape(self.c * self.w * self.h, self.output)
        bytes_read += self.nweights
        return bytes_read * 4

    def get_weights(self, printing=False):
        if printing:
            print("[weights, biases]")
        return [self.weights, self.biases]

    def to_tf(self, tensors):
        from tensorflow.keras.layers import Dense, Flatten

        layer1 = Flatten()
        layer2 = Dense(
            self.output,
            activation=activation_function_dn_to_keras_name(self.activation)
        )
        return layer2(layer1(tensors[-1])), layer2

@layer_builder.register('detection')
@dataclass
class detectionCFG(Config):
    _type: str = None
    w: int = field(init=True, repr=True, default=0)
    h: int = field(init=True, repr=True, default=0)
    c: int = field(init=True, repr=True, default=0)

    classes: int = field(init=True, repr=True, default=20)
    coords: int = field(init=True, repr=True, default=4)
    rescore: int = field(init=True, repr=True, default=1)
    side: int = field(init=True, repr=True, default=7)
    num: int = field(init=True, repr=True, default=3)
    softmax: int = field(init=True, repr=True, default=0)
    sqrt: int = field(init=True, repr=True, default=1)
    jitter: float = field(init=True, repr=True, default=0.2)

    object_scale: int = field(init=True, repr=True, default=1)
    noobject_scale: int = field(init=True, repr=True, default=0.5)
    class_scale: int = field(init=True, repr=True, default=1)
    coord_scale: int = field(init=True, repr=True, default=5)

    @classmethod
    def from_dict(clz, net, layer_dict):
        if 'w' not in layer_dict:
            prevlayer = net[-1]
            l = {
                "w": prevlayer.shape[0],
                **layer_dict
            }
        else:
            l = layer_dict
        return clz(**l)

    @property
    def shape(self):
        return (self.side, self.side, self.num * 5 + self.classes)

    def to_tf(self, tensors):
        from tensorflow.keras.layers import Reshape
        shape = (self.side, self.side, self.num * 5 + self.classes)
        layer = Reshape(shape)
        return layer(tensors[-1])


@layer_builder.register('dropout')
@dataclass
class dropoutCFG(Config):
    _type: str = None
    w: int = field(init=True, default=1715)
    h: int = field(init=True, default=0)
    c: int = field(init=True, default=0)

    probability: int = field(init=True, default=0.5)

    @property
    def shape(self):
        return (self.w, self.h, self.c)

    def to_tf(self, tensors):
        from tensorflow.keras.layers import Dropout
        dropout = Dropout(rate=self.probability)
        return dropout(tensors[-1])


def len_width(n, f, p, s):
    '''
    n: height or width
    f: kernels height or width
    p: padding
    s: strides height or width
    '''
    return int(((n + 2 * p - f) / s) + 1)


def len_width_up(n, f, p, s):
    '''
    n: height or width
    f: kernels height or width
    p: padding
    s: strides height or width
    '''
    return int(((n - 1) * s - 2 * p + (f - 1)) + 1)


def read_n_floats(n, bfile):
    """c style read n float 32"""
    return np.fromfile(bfile, 'f4', n)


def read_n_int(n, bfile, unsigned=False):
    """c style read n int 32"""
    dtype = '<u4' if unsigned else '<i4'
    return np.fromfile(bfile, dtype, n)


def read_n_long(n, bfile, unsigned=False):
    """c style read n int 64"""
    dtype = '<u8' if unsigned else '<i8'
    return np.fromfile(bfile, dtype, n)


def activation_function_dn_to_keras_name(dn):
    return dn


def get_primitive_tf_layer_name(var, piece=3):
    name = var.name
    parts = name.rsplit('/', piece)
    if len(parts) < piece:
        return None

    token = parts[-piece]
    cid = []
    while True:
        try:
            name, count = token.rsplit('_', 1)
        except:
            break
        try:
            cid.append(int(count))
        except:
            break
        else:
            token = name

    if token[0].upper() == token[0]:
        return cid, token
    return cid, ''.join([x.capitalize() for x in token.split('_')])


# Testing locally connected config:
if __name__ == "__main__":
    config_path = "yolo/utils/_darknet2tf/test_locally_connected_config.cfg"
    weights_path = "D:/yolov1.weights"

    from yolo.utils import DarkNetConverter
    converter = DarkNetConverter()
    x = converter.read(config_file=config_path, weights_file=weights_path)
    print("Weights loaded successfully")
    x = x.to_tf()
    print("Layers converted to TF successfully")