maskrcnn.py 17.8 KB
Newer Older
Yeqing Li's avatar
Yeqing Li committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Yeqing Li's avatar
Yeqing Li committed
14

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
15
"""MaskRCNN task definition."""
Abdullah Rashwan's avatar
Abdullah Rashwan committed
16
import os
Fan Yang's avatar
Fan Yang committed
17
from typing import Any, Optional, List, Tuple, Mapping
Abdullah Rashwan's avatar
Abdullah Rashwan committed
18
19
20

from absl import logging
import tensorflow as tf
21
from official.common import dataset_fn
Abdullah Rashwan's avatar
Abdullah Rashwan committed
22
23
24
from official.core import base_task
from official.core import task_factory
from official.vision.beta.configs import maskrcnn as exp_cfg
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
25
from official.vision.beta.dataloaders import input_reader_factory
Abdullah Rashwan's avatar
Abdullah Rashwan committed
26
27
28
29
from official.vision.beta.dataloaders import maskrcnn_input
from official.vision.beta.dataloaders import tf_example_decoder
from official.vision.beta.dataloaders import tf_example_label_map_decoder
from official.vision.beta.evaluation import coco_evaluator
Abdullah Rashwan's avatar
Abdullah Rashwan committed
30
from official.vision.beta.evaluation import coco_utils
Abdullah Rashwan's avatar
Abdullah Rashwan committed
31
32
33
34
from official.vision.beta.losses import maskrcnn_losses
from official.vision.beta.modeling import factory


Fan Yang's avatar
Fan Yang committed
35
36
def zero_out_disallowed_class_ids(batch_class_ids: tf.Tensor,
                                  allowed_class_ids: List[int]):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
  """Zero out IDs of classes not in allowed_class_ids.

  Args:
    batch_class_ids: A [batch_size, num_instances] int tensor of input
      class IDs.
    allowed_class_ids: A python list of class IDs which we want to allow.

  Returns:
      filtered_class_ids: A [batch_size, num_instances] int tensor with any
        class ID not in allowed_class_ids set to 0.
  """

  allowed_class_ids = tf.constant(allowed_class_ids,
                                  dtype=batch_class_ids.dtype)

  match_ids = (batch_class_ids[:, :, tf.newaxis] ==
               allowed_class_ids[tf.newaxis, tf.newaxis, :])

  match_ids = tf.reduce_any(match_ids, axis=2)
  return tf.where(match_ids, batch_class_ids, tf.zeros_like(batch_class_ids))


Abdullah Rashwan's avatar
Abdullah Rashwan committed
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
@task_factory.register_task_cls(exp_cfg.MaskRCNNTask)
class MaskRCNNTask(base_task.Task):
  """A single-replica view of training procedure.

  Mask R-CNN task provides artifacts for training/evalution procedures,
  including loading/iterating over Datasets, initializing the model, calculating
  the loss, post-processing, and customized metrics with reduction.
  """

  def build_model(self):
    """Build Mask R-CNN model."""

    input_specs = tf.keras.layers.InputSpec(
        shape=[None] + self.task_config.model.input_size)

    l2_weight_decay = self.task_config.losses.l2_weight_decay
    # Divide weight decay by 2.0 to match the implementation of tf.nn.l2_loss.
    # (https://www.tensorflow.org/api_docs/python/tf/keras/regularizers/l2)
    # (https://www.tensorflow.org/api_docs/python/tf/nn/l2_loss)
    l2_regularizer = (tf.keras.regularizers.l2(
        l2_weight_decay / 2.0) if l2_weight_decay else None)

    model = factory.build_maskrcnn(
        input_specs=input_specs,
        model_config=self.task_config.model,
        l2_regularizer=l2_regularizer)
    return model

  def initialize(self, model: tf.keras.Model):
    """Loading pretrained checkpoint."""
    if not self.task_config.init_checkpoint:
      return

    ckpt_dir_or_file = self.task_config.init_checkpoint
    if tf.io.gfile.isdir(ckpt_dir_or_file):
      ckpt_dir_or_file = tf.train.latest_checkpoint(ckpt_dir_or_file)

    # Restoring checkpoint.
    if self.task_config.init_checkpoint_modules == 'all':
      ckpt = tf.train.Checkpoint(**model.checkpoint_items)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
99
100
      status = ckpt.read(ckpt_dir_or_file)
      status.expect_partial().assert_existing_objects_matched()
Xianzhi Du's avatar
Xianzhi Du committed
101
102
103
104
105
106
107
108
    else:
      ckpt_items = {}
      if 'backbone' in self.task_config.init_checkpoint_modules:
        ckpt_items.update(backbone=model.backbone)
      if 'decoder' in self.task_config.init_checkpoint_modules:
        ckpt_items.update(decoder=model.decoder)

      ckpt = tf.train.Checkpoint(**ckpt_items)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
109
      status = ckpt.read(ckpt_dir_or_file)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
110
111
112
113
114
      status.expect_partial().assert_existing_objects_matched()

    logging.info('Finished loading pretrained checkpoint from %s',
                 ckpt_dir_or_file)

Fan Yang's avatar
Fan Yang committed
115
116
117
  def build_inputs(self,
                   params: exp_cfg.DataConfig,
                   input_context: Optional[tf.distribute.InputContext] = None):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
118
119
120
121
122
    """Build input dataset."""
    decoder_cfg = params.decoder.get()
    if params.decoder.type == 'simple_decoder':
      decoder = tf_example_decoder.TfExampleDecoder(
          include_mask=self._task_config.model.include_mask,
123
124
          regenerate_source_id=decoder_cfg.regenerate_source_id,
          mask_binarize_threshold=decoder_cfg.mask_binarize_threshold)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
125
126
127
128
    elif params.decoder.type == 'label_map_decoder':
      decoder = tf_example_label_map_decoder.TfExampleDecoderLabelMap(
          label_map=decoder_cfg.label_map,
          include_mask=self._task_config.model.include_mask,
129
130
          regenerate_source_id=decoder_cfg.regenerate_source_id,
          mask_binarize_threshold=decoder_cfg.mask_binarize_threshold)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
    else:
      raise ValueError('Unknown decoder type: {}!'.format(params.decoder.type))

    parser = maskrcnn_input.Parser(
        output_size=self.task_config.model.input_size[:2],
        min_level=self.task_config.model.min_level,
        max_level=self.task_config.model.max_level,
        num_scales=self.task_config.model.anchor.num_scales,
        aspect_ratios=self.task_config.model.anchor.aspect_ratios,
        anchor_size=self.task_config.model.anchor.anchor_size,
        dtype=params.dtype,
        rpn_match_threshold=params.parser.rpn_match_threshold,
        rpn_unmatched_threshold=params.parser.rpn_unmatched_threshold,
        rpn_batch_size_per_im=params.parser.rpn_batch_size_per_im,
        rpn_fg_fraction=params.parser.rpn_fg_fraction,
        aug_rand_hflip=params.parser.aug_rand_hflip,
        aug_scale_min=params.parser.aug_scale_min,
        aug_scale_max=params.parser.aug_scale_max,
        skip_crowd_during_training=params.parser.skip_crowd_during_training,
        max_num_instances=params.parser.max_num_instances,
        include_mask=self._task_config.model.include_mask,
        mask_crop_size=params.parser.mask_crop_size)

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
154
    reader = input_reader_factory.input_reader_generator(
Abdullah Rashwan's avatar
Abdullah Rashwan committed
155
        params,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
156
        dataset_fn=dataset_fn.pick_dataset_fn(params.file_type),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
157
158
159
160
161
162
        decoder_fn=decoder.decode,
        parser_fn=parser.parse_fn(params.is_training))
    dataset = reader.read(input_context=input_context)

    return dataset

Fan Yang's avatar
Fan Yang committed
163
164
165
166
  def build_losses(self,
                   outputs: Mapping[str, Any],
                   labels: Mapping[str, Any],
                   aux_losses: Optional[Any] = None):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
167
168
    """Build Mask R-CNN losses."""
    params = self.task_config
Xianzhi Du's avatar
Xianzhi Du committed
169
    cascade_ious = params.model.roi_sampler.cascade_iou_thresholds
Abdullah Rashwan's avatar
Abdullah Rashwan committed
170
171
172
173
174
175
176
177
178
179
180
181
182
183

    rpn_score_loss_fn = maskrcnn_losses.RpnScoreLoss(
        tf.shape(outputs['box_outputs'])[1])
    rpn_box_loss_fn = maskrcnn_losses.RpnBoxLoss(
        params.losses.rpn_huber_loss_delta)
    rpn_score_loss = tf.reduce_mean(
        rpn_score_loss_fn(
            outputs['rpn_scores'], labels['rpn_score_targets']))
    rpn_box_loss = tf.reduce_mean(
        rpn_box_loss_fn(
            outputs['rpn_boxes'], labels['rpn_box_targets']))

    frcnn_cls_loss_fn = maskrcnn_losses.FastrcnnClassLoss()
    frcnn_box_loss_fn = maskrcnn_losses.FastrcnnBoxLoss(
Xianzhi Du's avatar
Xianzhi Du committed
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
        params.losses.frcnn_huber_loss_delta,
        params.model.detection_head.class_agnostic_bbox_pred)

    # Final cls/box losses are computed as an average of all detection heads.
    frcnn_cls_loss = 0.0
    frcnn_box_loss = 0.0
    num_det_heads = 1 if cascade_ious is None else 1 + len(cascade_ious)
    for cas_num in range(num_det_heads):
      frcnn_cls_loss_i = tf.reduce_mean(
          frcnn_cls_loss_fn(
              outputs['class_outputs_{}'
                      .format(cas_num) if cas_num else 'class_outputs'],
              outputs['class_targets_{}'
                      .format(cas_num) if cas_num else 'class_targets']))
      frcnn_box_loss_i = tf.reduce_mean(
          frcnn_box_loss_fn(
              outputs['box_outputs_{}'.format(cas_num
                                             ) if cas_num else 'box_outputs'],
              outputs['class_targets_{}'
                      .format(cas_num) if cas_num else 'class_targets'],
              outputs['box_targets_{}'.format(cas_num
                                             ) if cas_num else 'box_targets']))
      frcnn_cls_loss += frcnn_cls_loss_i
      frcnn_box_loss += frcnn_box_loss_i
    frcnn_cls_loss /= num_det_heads
    frcnn_box_loss /= num_det_heads
Abdullah Rashwan's avatar
Abdullah Rashwan committed
210
211
212

    if params.model.include_mask:
      mask_loss_fn = maskrcnn_losses.MaskrcnnLoss()
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
213
214
215
216
217
218
      mask_class_targets = outputs['mask_class_targets']
      if self._task_config.allowed_mask_class_ids is not None:
        # Classes with ID=0 are ignored by mask_loss_fn in loss computation.
        mask_class_targets = zero_out_disallowed_class_ids(
            mask_class_targets, self._task_config.allowed_mask_class_ids)

Abdullah Rashwan's avatar
Abdullah Rashwan committed
219
220
221
222
      mask_loss = tf.reduce_mean(
          mask_loss_fn(
              outputs['mask_outputs'],
              outputs['mask_targets'],
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
223
              mask_class_targets))
Abdullah Rashwan's avatar
Abdullah Rashwan committed
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
    else:
      mask_loss = 0.0

    model_loss = (
        params.losses.rpn_score_weight * rpn_score_loss +
        params.losses.rpn_box_weight * rpn_box_loss +
        params.losses.frcnn_class_weight * frcnn_cls_loss +
        params.losses.frcnn_box_weight * frcnn_box_loss +
        params.losses.mask_weight * mask_loss)

    total_loss = model_loss
    if aux_losses:
      reg_loss = tf.reduce_sum(aux_losses)
      total_loss = model_loss + reg_loss

Abdullah Rashwan's avatar
Abdullah Rashwan committed
239
    total_loss = params.losses.loss_weight * total_loss
Abdullah Rashwan's avatar
Abdullah Rashwan committed
240
241
242
243
244
245
246
247
248
249
250
    losses = {
        'total_loss': total_loss,
        'rpn_score_loss': rpn_score_loss,
        'rpn_box_loss': rpn_box_loss,
        'frcnn_cls_loss': frcnn_cls_loss,
        'frcnn_box_loss': frcnn_box_loss,
        'mask_loss': mask_loss,
        'model_loss': model_loss,
    }
    return losses

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
  def _build_coco_metrics(self):
    """Build COCO metrics evaluator."""
    if (not self._task_config.model.include_mask
       ) or self._task_config.annotation_file:
      self.coco_metric = coco_evaluator.COCOEvaluator(
          annotation_file=self._task_config.annotation_file,
          include_mask=self._task_config.model.include_mask,
          per_category_metrics=self._task_config.per_category_metrics)
    else:
      # Builds COCO-style annotation file if include_mask is True, and
      # annotation_file isn't provided.
      annotation_path = os.path.join(self._logging_dir, 'annotation.json')
      if tf.io.gfile.exists(annotation_path):
        logging.info(
            'annotation.json file exists, skipping creating the annotation'
            ' file.')
      else:
        if self._task_config.validation_data.num_examples <= 0:
          logging.info('validation_data.num_examples needs to be > 0')
        if not self._task_config.validation_data.input_path:
          logging.info('Can not create annotation file for tfds.')
        logging.info(
            'Creating coco-style annotation file: %s', annotation_path)
        coco_utils.scan_and_generator_annotation_file(
            self._task_config.validation_data.input_path,
            self._task_config.validation_data.file_type,
            self._task_config.validation_data.num_examples,
            self.task_config.model.include_mask, annotation_path)
      self.coco_metric = coco_evaluator.COCOEvaluator(
          annotation_file=annotation_path,
          include_mask=self._task_config.model.include_mask,
          per_category_metrics=self._task_config.per_category_metrics)

Fan Yang's avatar
Fan Yang committed
284
  def build_metrics(self, training: bool = True):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
    """Build detection metrics."""
    metrics = []
    if training:
      metric_names = [
          'total_loss',
          'rpn_score_loss',
          'rpn_box_loss',
          'frcnn_cls_loss',
          'frcnn_box_loss',
          'mask_loss',
          'model_loss'
      ]
      for name in metric_names:
        metrics.append(tf.keras.metrics.Mean(name, dtype=tf.float32))

    else:
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
301
302
303
      if self._task_config.use_coco_metrics:
        self._build_coco_metrics()
      if self._task_config.use_wod_metrics:
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
304
305
306
307
308
309
310
311
312
313
314
315
        # To use Waymo open dataset metrics, please install one of the pip
        # package `waymo-open-dataset-tf-*` from
        # https://github.com/waymo-research/waymo-open-dataset/blob/master/docs/quick_start.md#use-pre-compiled-pippip3-packages-for-linux
        # Note that the package is built with specific tensorflow version and
        # will produce error if it does not match the tf version that is
        # currently used.
        try:
          from official.vision.beta.evaluation import wod_detection_evaluator  # pylint: disable=g-import-not-at-top
        except ModuleNotFoundError:
          logging.error('waymo-open-dataset should be installed to enable Waymo'
                        ' evaluator.')
          raise
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
316
        self.wod_metric = wod_detection_evaluator.WOD2dDetectionEvaluator()
Abdullah Rashwan's avatar
Abdullah Rashwan committed
317
318
319

    return metrics

Fan Yang's avatar
Fan Yang committed
320
321
322
323
324
  def train_step(self,
                 inputs: Tuple[Any, Any],
                 model: tf.keras.Model,
                 optimizer: tf.keras.optimizers.Optimizer,
                 metrics: Optional[List[Any]] = None):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
    """Does forward and backward.

    Args:
      inputs: a dictionary of input tensors.
      model: the model, forward pass definition.
      optimizer: the optimizer for this training step.
      metrics: a nested structure of metrics objects.

    Returns:
      A dictionary of logs.
    """
    images, labels = inputs
    num_replicas = tf.distribute.get_strategy().num_replicas_in_sync
    with tf.GradientTape() as tape:
      outputs = model(
          images,
          image_shape=labels['image_info'][:, 1, :],
          anchor_boxes=labels['anchor_boxes'],
          gt_boxes=labels['gt_boxes'],
          gt_classes=labels['gt_classes'],
          gt_masks=(labels['gt_masks'] if self.task_config.model.include_mask
                    else None),
          training=True)
      outputs = tf.nest.map_structure(
          lambda x: tf.cast(x, tf.float32), outputs)

      # Computes per-replica loss.
      losses = self.build_losses(
          outputs=outputs, labels=labels, aux_losses=model.losses)
      scaled_loss = losses['total_loss'] / num_replicas

      # For mixed_precision policy, when LossScaleOptimizer is used, loss is
      # scaled for numerical stability.
Pankaj Kanwar's avatar
Pankaj Kanwar committed
358
      if isinstance(optimizer, tf.keras.mixed_precision.LossScaleOptimizer):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
359
360
361
362
363
        scaled_loss = optimizer.get_scaled_loss(scaled_loss)

    tvars = model.trainable_variables
    grads = tape.gradient(scaled_loss, tvars)
    # Scales back gradient when LossScaleOptimizer is used.
Pankaj Kanwar's avatar
Pankaj Kanwar committed
364
    if isinstance(optimizer, tf.keras.mixed_precision.LossScaleOptimizer):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
365
366
367
368
369
370
371
372
373
374
375
      grads = optimizer.get_unscaled_gradients(grads)
    optimizer.apply_gradients(list(zip(grads, tvars)))

    logs = {self.loss: losses['total_loss']}

    if metrics:
      for m in metrics:
        m.update_state(losses[m.name])

    return logs

Fan Yang's avatar
Fan Yang committed
376
377
378
379
  def validation_step(self,
                      inputs: Tuple[Any, Any],
                      model: tf.keras.Model,
                      metrics: Optional[List[Any]] = None):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
    """Validatation step.

    Args:
      inputs: a dictionary of input tensors.
      model: the keras.Model.
      metrics: a nested structure of metrics objects.

    Returns:
      A dictionary of logs.
    """
    images, labels = inputs

    outputs = model(
        images,
        anchor_boxes=labels['anchor_boxes'],
        image_shape=labels['image_info'][:, 1, :],
        training=False)

    logs = {self.loss: 0}
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
    if self._task_config.use_coco_metrics:
      coco_model_outputs = {
          'detection_boxes': outputs['detection_boxes'],
          'detection_scores': outputs['detection_scores'],
          'detection_classes': outputs['detection_classes'],
          'num_detections': outputs['num_detections'],
          'source_id': labels['groundtruths']['source_id'],
          'image_info': labels['image_info']
      }
      if self.task_config.model.include_mask:
        coco_model_outputs.update({
            'detection_masks': outputs['detection_masks'],
        })
      logs.update(
          {self.coco_metric.name: (labels['groundtruths'], coco_model_outputs)})

    if self.task_config.use_wod_metrics:
      wod_model_outputs = {
          'detection_boxes': outputs['detection_boxes'],
          'detection_scores': outputs['detection_scores'],
          'detection_classes': outputs['detection_classes'],
          'num_detections': outputs['num_detections'],
          'source_id': labels['groundtruths']['source_id'],
          'image_info': labels['image_info']
      }
      logs.update(
          {self.wod_metric.name: (labels['groundtruths'], wod_model_outputs)})
Abdullah Rashwan's avatar
Abdullah Rashwan committed
426
427
428
    return logs

  def aggregate_logs(self, state=None, step_outputs=None):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
429
430
431
432
433
434
435
436
437
438
439
440
    if self._task_config.use_coco_metrics:
      if state is None:
        self.coco_metric.reset_states()
      self.coco_metric.update_state(
          step_outputs[self.coco_metric.name][0],
          step_outputs[self.coco_metric.name][1])
    if self._task_config.use_wod_metrics:
      if state is None:
        self.wod_metric.reset_states()
      self.wod_metric.update_state(
          step_outputs[self.wod_metric.name][0],
          step_outputs[self.wod_metric.name][1])
Abdullah Rashwan's avatar
Abdullah Rashwan committed
441
    if state is None:
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
442
443
444
      # Create an arbitrary state to indicate it's not the first step in the
      # following calls to this function.
      state = True
Abdullah Rashwan's avatar
Abdullah Rashwan committed
445
446
    return state

447
  def reduce_aggregated_logs(self, aggregated_logs, global_step=None):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
448
449
450
451
452
453
    logs = {}
    if self._task_config.use_coco_metrics:
      logs.update(self.coco_metric.result())
    if self._task_config.use_wod_metrics:
      logs.update(self.wod_metric.result())
    return logs