transformer_benchmark.py 27.4 KB
Newer Older
Toby Boyd's avatar
Toby Boyd committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Executes Transformer w/Keras benchmark and accuracy tests."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import time

from absl import flags
Adrian Kuegel's avatar
Adrian Kuegel committed
24
import tensorflow as tf
25
from official.benchmark import benchmark_wrappers
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
26
from official.benchmark import owner_utils
27
from official.benchmark.perfzero_benchmark import PerfZeroBenchmark
28
29
from official.nlp.transformer import misc
from official.nlp.transformer import transformer_main as transformer_main
30
from official.utils.flags import core as flags_core
Toby Boyd's avatar
Toby Boyd committed
31

Allen Wang's avatar
Allen Wang committed
32
33
TPU_DATA_DIR = 'gs://mlcompass-data/transformer'
GPU_DATA_DIR = os.getenv('TMPDIR')
Toby Boyd's avatar
Toby Boyd committed
34
35
36
TRANSFORMER_EN2DE_DATA_DIR_NAME = 'wmt32k-en2de-official'
EN2DE_2014_BLEU_DATA_DIR_NAME = 'newstest2014'
FLAGS = flags.FLAGS
David Chen's avatar
David Chen committed
37
TMP_DIR = os.getenv('TMPDIR')
Toby Boyd's avatar
Toby Boyd committed
38
39
40
41
42
43
44


class TransformerBenchmark(PerfZeroBenchmark):
  """Methods common to executing transformer w/keras tests.

     Code under test for the Transformer Keras models report the same data and
     require the same FLAG setup.
Allen Wang's avatar
Allen Wang committed
45

Toby Boyd's avatar
Toby Boyd committed
46
47
48
  """

  def __init__(self, output_dir=None, default_flags=None, root_data_dir=None,
Tayo Oguntebi's avatar
Tayo Oguntebi committed
49
               flag_methods=None, tpu=None):
Allen Wang's avatar
Allen Wang committed
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
    self._set_data_files()

    if default_flags is None:
      default_flags = {}
    default_flags['data_dir'] = self.train_data_dir
    default_flags['vocab_file'] = self.vocab_file

    super(TransformerBenchmark, self).__init__(
        output_dir=output_dir,
        default_flags=default_flags,
        flag_methods=flag_methods,
        tpu=tpu)

  def _set_data_files(self, tpu_run=False):
    """Sets train_data_dir, vocab_file, bleu_source and bleu_ref."""
    if tpu_run:
      root_data_dir = TPU_DATA_DIR
    else:
      root_data_dir = GPU_DATA_DIR
Hongkun Yu's avatar
Hongkun Yu committed
69

Allen Wang's avatar
Allen Wang committed
70
71
    root_data_dir = root_data_dir if root_data_dir else ''

Toby Boyd's avatar
Toby Boyd committed
72
73
74
75
76
77
78
79
80
81
82
83
    self.train_data_dir = os.path.join(root_data_dir,
                                       TRANSFORMER_EN2DE_DATA_DIR_NAME)
    self.vocab_file = os.path.join(root_data_dir,
                                   TRANSFORMER_EN2DE_DATA_DIR_NAME,
                                   'vocab.ende.32768')
    self.bleu_source = os.path.join(root_data_dir,
                                    EN2DE_2014_BLEU_DATA_DIR_NAME,
                                    'newstest2014.en')
    self.bleu_ref = os.path.join(root_data_dir,
                                 EN2DE_2014_BLEU_DATA_DIR_NAME,
                                 'newstest2014.de')

Allen Wang's avatar
Allen Wang committed
84
85
86
87
88
89
90
  def _set_data_file_flags(self):
    """Sets the FLAGS for the data files."""
    FLAGS.data_dir = self.train_data_dir
    FLAGS.vocab_file = self.vocab_file
    # Sets values directly to avoid validation check.
    FLAGS['bleu_source'].value = self.bleu_source
    FLAGS['bleu_ref'].value = self.bleu_ref
Toby Boyd's avatar
Toby Boyd committed
91

92
  @benchmark_wrappers.enable_runtime_flags
Toby Boyd's avatar
Toby Boyd committed
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
  def _run_and_report_benchmark(self,
                                bleu_max=None,
                                bleu_min=None,
                                log_steps=None,
                                total_batch_size=None,
                                warmup=1):
    """Report benchmark results by writing to local protobuf file.

    Args:
      bleu_max: highest passing level for bleu score.
      bleu_min: lowest passing level for bleu score.
      log_steps: How often the log was created for stats['step_timestamp_log'].
      total_batch_size: Global batch-size.
      warmup: number of entries in stats['step_timestamp_log'] to ignore.
    """
    start_time_sec = time.time()
    task = transformer_main.TransformerTask(FLAGS)
    stats = task.train()
    wall_time_sec = time.time() - start_time_sec

    metrics = []
    if 'bleu_uncased' in stats:
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
      if 'bleu_uncased_history' in stats:
        bleu_uncased_best = max(stats['bleu_uncased_history'],
                                key=lambda x: x[1])
        metrics.append({'name': 'bleu_uncased',
                        'value': bleu_uncased_best[1],
                        'min_value': bleu_min,
                        'max_value': bleu_max})
        metrics.append({'name': 'bleu_best_score_iteration',
                        'value': bleu_uncased_best[0]})
        metrics.append({'name': 'bleu_uncased_last',
                        'value': stats['bleu_uncased']})
      else:
        metrics.append({'name': 'bleu_uncased',
                        'value': stats['bleu_uncased'],
                        'min_value': bleu_min,
                        'max_value': bleu_max})
Toby Boyd's avatar
Toby Boyd committed
131
132

    if (warmup and 'step_timestamp_log' in stats and
Tayo Oguntebi's avatar
Tayo Oguntebi committed
133
        len(stats['step_timestamp_log']) > warmup + 1):
Toby Boyd's avatar
Toby Boyd committed
134
135
136
137
138
139
140
141
142
143
144
145
146
147
      # first entry in the time_log is start of step 1. The rest of the
      # entries are the end of each step recorded
      time_log = stats['step_timestamp_log']
      elapsed = time_log[-1].timestamp - time_log[warmup].timestamp
      num_examples = (
          total_batch_size * log_steps * (len(time_log) - warmup - 1))
      examples_per_sec = num_examples / elapsed
      metrics.append({'name': 'exp_per_second',
                      'value': examples_per_sec})

    if 'avg_exp_per_second' in stats:
      metrics.append({'name': 'avg_exp_per_second',
                      'value': stats['avg_exp_per_second']})

Tayo Oguntebi's avatar
Tayo Oguntebi committed
148
149
150
151
152
    if 'step_timestamp_log' in stats:
      time_log = stats['step_timestamp_log']
      metrics.append({'name': 'startup_time',
                      'value': time_log[0].timestamp - start_time_sec})

153
154
155
    flags_str = flags_core.get_nondefault_flags_as_str()
    self.report_benchmark(iters=-1, wall_time=wall_time_sec, metrics=metrics,
                          extras={'flags': flags_str})
Toby Boyd's avatar
Toby Boyd committed
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183


class TransformerBaseKerasAccuracy(TransformerBenchmark):
  """Benchmark accuracy tests for Transformer Base model w/ Keras."""

  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
    """Benchmark accuracy tests for Transformer Base model w/ Keras.

    Args:
      output_dir: directory where to output e.g. log files
      root_data_dir: directory under which to look for dataset
      **kwargs: arbitrary named arguments. This is needed to make the
                constructor forward compatible in case PerfZero provides more
                named arguments before updating the constructor.
    """
    flag_methods = [misc.define_transformer_flags]

    super(TransformerBaseKerasAccuracy, self).__init__(
        output_dir=output_dir, root_data_dir=root_data_dir,
        flag_methods=flag_methods)

  def benchmark_1_gpu(self):
    """Benchmark 1 gpu.

      The paper uses 8 GPUs and a much larger effective batch size, this is will
      not converge to the 27.3 BLEU (uncased) SOTA.
    """
    self._setup()
Allen Wang's avatar
Allen Wang committed
184
    self._set_data_file_flags()
Toby Boyd's avatar
Toby Boyd committed
185
186
    FLAGS.num_gpus = 1
    FLAGS.param_set = 'base'
187
188
189
    FLAGS.batch_size = 2048
    FLAGS.train_steps = 1000
    FLAGS.steps_between_evals = 500
Toby Boyd's avatar
Toby Boyd committed
190
191
192
193
194
195
196
197
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu')
    # These bleu scores are based on test runs after at this limited
    # number of steps and batch size after verifying SOTA at 8xV100s.
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps,
                                   bleu_min=25.3,
                                   bleu_max=26)

198
199
200
201
202
203
204
  def benchmark_1_gpu_static_batch(self):
    """Benchmark 1 gpu with static_batch.

      The paper uses 8 GPUs and a much larger effective batch size, this is will
      not converge to the 27.3 BLEU (uncased) SOTA.
    """
    self._setup()
Allen Wang's avatar
Allen Wang committed
205
    self._set_data_file_flags()
206
207
208
209
210
211
    FLAGS.num_gpus = 1
    FLAGS.param_set = 'base'
    FLAGS.batch_size = 4096
    FLAGS.train_steps = 100000
    FLAGS.steps_between_evals = 5000
    FLAGS.static_batch = True
212
    FLAGS.max_length = 64
213
214
215
216
217
218
219
220
221
222
223
224
225
226
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_static_batch')
    # These bleu scores are based on test runs after at this limited
    # number of steps and batch size after verifying SOTA at 8xV100s.
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps,
                                   bleu_min=25.3,
                                   bleu_max=26)

  def benchmark_8_gpu(self):
    """Benchmark 8 gpu.

      Should converge to 27.3 BLEU (uncased). This has not been confirmed yet.
    """
    self._setup()
Allen Wang's avatar
Allen Wang committed
227
    self._set_data_file_flags()
228
229
230
231
    FLAGS.num_gpus = 8
    FLAGS.param_set = 'base'
    FLAGS.batch_size = 4096*8
    FLAGS.train_steps = 100000
232
    FLAGS.steps_between_evals = 20000
233
234
235
236
237
238
239
240
241
242
243
244
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu')
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps,
                                   bleu_min=27,
                                   bleu_max=28)

  def benchmark_8_gpu_static_batch(self):
    """Benchmark 8 gpu.

      Should converge to 27.3 BLEU (uncased). This has not been confirmed yet.
    """
    self._setup()
Allen Wang's avatar
Allen Wang committed
245
    self._set_data_file_flags()
246
247
248
249
250
    FLAGS.num_gpus = 8
    FLAGS.param_set = 'base'
    FLAGS.batch_size = 4096*8
    FLAGS.train_steps = 100000
    FLAGS.static_batch = True
251
    FLAGS.max_length = 64
252
253
254
255
256
257
258
    FLAGS.steps_between_evals = 5000
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_static_batch')
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps,
                                   bleu_min=27,
                                   bleu_max=28)

Haoyu Zhang's avatar
Haoyu Zhang committed
259

260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
class TransformerBigKerasAccuracy(TransformerBenchmark):
  """Benchmark accuracy tests for Transformer Big model w/ Keras."""

  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
    """Benchmark accuracy tests for Transformer Big model w/ Keras.

    Args:
      output_dir: directory where to output e.g. log files
      root_data_dir: directory under which to look for dataset
      **kwargs: arbitrary named arguments. This is needed to make the
                constructor forward compatible in case PerfZero provides more
                named arguments before updating the constructor.
    """
    flag_methods = [misc.define_transformer_flags]

    super(TransformerBigKerasAccuracy, self).__init__(
        output_dir=output_dir, root_data_dir=root_data_dir,
        flag_methods=flag_methods)

  def benchmark_8_gpu(self):
    """Benchmark 8 gpu.

282
283
284
285
    Over 6 runs with eval every 20K steps the average highest value was 28.195
    (bleu uncased). 28.424 was the highest and 27.96 the lowest. The values are
    the highest value seen during a run and occurred at a median of iteration 9.
    Iterations are not epochs, an iteration is a number of steps between evals.
286
287
    """
    self._setup()
Allen Wang's avatar
Allen Wang committed
288
    self._set_data_file_flags()
289
290
291
    FLAGS.num_gpus = 8
    FLAGS.param_set = 'big'
    FLAGS.batch_size = 3072*8
292
    FLAGS.train_steps = 20000 * 12
293
    FLAGS.steps_between_evals = 20000
294
295
296
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu')
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps,
297
298
                                   bleu_min=27.9,
                                   bleu_max=29.2)
299
300
301
302

  def benchmark_8_gpu_static_batch(self):
    """Benchmark 8 gpu.

303
    Should converge to 28.4 BLEU (uncased). This has not be verified yet."
304
305
    """
    self._setup()
Allen Wang's avatar
Allen Wang committed
306
    self._set_data_file_flags()
307
308
309
310
    FLAGS.num_gpus = 8
    FLAGS.param_set = 'big'
    FLAGS.batch_size = 3072*8
    FLAGS.static_batch = True
311
    FLAGS.max_length = 64
312
    FLAGS.train_steps = 20000 * 12
Toby Boyd's avatar
Toby Boyd committed
313
    FLAGS.steps_between_evals = 20000
314
315
316
317
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_static_batch')
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps,
                                   bleu_min=28,
318
                                   bleu_max=29.2)
319

320
321
322
  def benchmark_8_gpu_fp16(self):
    """Benchmark 8 gpu with dynamic batch and fp16.

323
324
325
326
327
328
329
330
    Over 6 runs with eval every 20K steps the average highest value was 28.247
    (bleu uncased). 28.424 was the highest and 28.09 the lowest. The values are
    the highest value seen during a run and occurred at a median of iteration
    11. While this could be interpreted as worse than FP32, if looking at the
    first iteration at which 28 is passed FP16 performs equal and possibly
    better. Although not part of the initial test runs, the highest value
    recorded with the arguments below was 28.9 at iteration 12. Iterations are
    not epochs, an iteration is a number of steps between evals.
331
332
    """
    self._setup()
Allen Wang's avatar
Allen Wang committed
333
    self._set_data_file_flags()
334
335
336
337
    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.param_set = 'big'
    FLAGS.batch_size = 3072*8
338
    FLAGS.train_steps = 20000 * 12
339
340
341
342
343
    FLAGS.steps_between_evals = 20000
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_fp16')
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps,
                                   bleu_min=28,
344
                                   bleu_max=29.2)
345

Vinh Nguyen's avatar
Vinh Nguyen committed
346
347
348
349
350
351
  def benchmark_8_gpu_fp16_amp(self):
    """Benchmark 8 gpu with dynamic batch and fp16 with automatic mixed precision.

      Should converge to 28.4 BLEU (uncased). This has not be verified yet."
    """
    self._setup()
Allen Wang's avatar
Allen Wang committed
352
    self._set_data_file_flags()
Vinh Nguyen's avatar
Vinh Nguyen committed
353
354
355
356
357
358
359
360
361
362
363
364
    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.fp16_implementation = 'graph_rewrite'
    FLAGS.param_set = 'big'
    FLAGS.batch_size = 3072*8
    FLAGS.train_steps = 20000 * 12
    FLAGS.steps_between_evals = 20000
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_fp16_amp')
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps,
                                   bleu_min=28,
                                   bleu_max=29)
Hongkun Yu's avatar
Hongkun Yu committed
365

Toby Boyd's avatar
Toby Boyd committed
366
367
368
369
370
371
  def benchmark_8_gpu_static_batch_fp16(self):
    """Benchmark 8 gpu with static batch and fp16.

      Should converge to 28.4 BLEU (uncased). This has not be verified yet."
    """
    self._setup()
Allen Wang's avatar
Allen Wang committed
372
    self._set_data_file_flags()
Toby Boyd's avatar
Toby Boyd committed
373
374
375
376
377
378
379
380
381
382
383
384
    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.param_set = 'big'
    FLAGS.batch_size = 3072*8
    FLAGS.static_batch = True
    FLAGS.max_length = 64
    FLAGS.train_steps = 400000
    FLAGS.steps_between_evals = 20000
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_static_batch_fp16')
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps,
                                   bleu_min=28,
385
                                   bleu_max=29.2)
Toby Boyd's avatar
Toby Boyd committed
386
387
388
389
390
391
392

  def benchmark_xla_8_gpu_static_batch_fp16(self):
    """Benchmark 8 gpu with static batch, XLA, and FP16.

      Should converge to 28.4 BLEU (uncased). This has not be verified yet."
    """
    self._setup()
Allen Wang's avatar
Allen Wang committed
393
    self._set_data_file_flags()
Toby Boyd's avatar
Toby Boyd committed
394
395
396
397
398
399
400
401
402
403
404
405
406
407
    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_xla = True
    FLAGS.param_set = 'big'
    FLAGS.batch_size = 3072*8
    FLAGS.static_batch = True
    FLAGS.max_length = 64
    FLAGS.train_steps = 400000
    FLAGS.steps_between_evals = 20000
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_xla_8_gpu_static_batch_fp16')
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps,
                                   bleu_min=28,
408
                                   bleu_max=29.2)
Toby Boyd's avatar
Toby Boyd committed
409

Toby Boyd's avatar
Toby Boyd committed
410
411
412
413
414

class TransformerKerasBenchmark(TransformerBenchmark):
  """Benchmarks for Transformer (Base and Big) using Keras."""

  def __init__(self, output_dir=None, default_flags=None,
Tayo Oguntebi's avatar
Tayo Oguntebi committed
415
               root_data_dir=None, batch_per_gpu=4096, tpu=None):
Toby Boyd's avatar
Toby Boyd committed
416
417
418
419
420
421
422
    """Initialize.

    Args:
      output_dir: Based directory for saving artifacts, e.g. checkpoints.
      default_flags: default flags to use for all tests.
      root_data_dir: root directory for data, e.g. training.
      batch_per_gpu: batch size to use per gpu.
Tayo Oguntebi's avatar
Tayo Oguntebi committed
423
      tpu: Target TPU to use.
Toby Boyd's avatar
Toby Boyd committed
424
425
426
427
428
429
430
431
    """
    flag_methods = [misc.define_transformer_flags]
    self.batch_per_gpu = batch_per_gpu

    super(TransformerKerasBenchmark, self).__init__(
        output_dir=output_dir,
        default_flags=default_flags,
        root_data_dir=root_data_dir,
Tayo Oguntebi's avatar
Tayo Oguntebi committed
432
433
        flag_methods=flag_methods,
        tpu=tpu)
Toby Boyd's avatar
Toby Boyd committed
434

435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
  def benchmark_1_gpu_no_dist_strat(self):
    """Benchmark 1 gpu without distribution strategy."""
    self._setup()
    FLAGS.num_gpus = 1
    FLAGS.distribution_strategy = 'off'
    FLAGS.batch_size = self.batch_per_gpu
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_no_dist_strat')
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps)

  def benchmark_1_gpu_no_dist_strat_static_batch(self):
    """Benchmark 1 gpu without distribution strategy with static batch."""
    self._setup()
    FLAGS.num_gpus = 1
    FLAGS.distribution_strategy = 'off'
    FLAGS.batch_size = self.batch_per_gpu
guptapriya's avatar
guptapriya committed
451
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_no_ds_sb')
452
453
454
455
456
    FLAGS.static_batch = True
    FLAGS.max_length = 64
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps)

Toby Boyd's avatar
Toby Boyd committed
457
458
459
460
461
462
463
464
465
  def benchmark_1_gpu(self):
    """Benchmark 1 gpu."""
    self._setup()
    FLAGS.num_gpus = 1
    FLAGS.batch_size = self.batch_per_gpu
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu')
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps)

466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
  def benchmark_1_gpu_fp16(self):
    """Benchmark 1 gpu FP16."""
    self._setup()
    FLAGS.num_gpus = 1
    FLAGS.batch_size = self.batch_per_gpu
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_fp16')
    FLAGS.dtype = 'fp16'
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps)

  def benchmark_xla_1_gpu(self):
    """Benchmark 1 gpu w/xla."""
    self._setup()
    FLAGS.num_gpus = 1
    FLAGS.batch_size = self.batch_per_gpu
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu')
    FLAGS.enable_xla = True
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps)

  def benchmark_xla_1_gpu_fp16(self):
    """Benchmark 1 gpu w/xla and FP16."""
    self._setup()
    FLAGS.num_gpus = 1
    FLAGS.batch_size = self.batch_per_gpu
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_fp16')
    FLAGS.enable_xla = True
    FLAGS.dtype = 'fp16'
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps)

497
  def benchmark_1_gpu_static_batch(self):
498
    """Benchmark 1 gpu with static batch."""
499
500
501
502
503
    self._setup()
    FLAGS.num_gpus = 1
    FLAGS.batch_size = self.batch_per_gpu
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_static_batch')
    FLAGS.static_batch = True
504
    FLAGS.max_length = 64
505
506
507
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps)

508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
  def benchmark_xla_1_gpu_static_batch(self):
    """Benchmark 1 gpu with static batch w/xla."""
    self._setup()
    FLAGS.num_gpus = 1
    FLAGS.batch_size = self.batch_per_gpu
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_static_batch')
    FLAGS.static_batch = True
    FLAGS.max_length = 64
    FLAGS.enable_xla = True
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps)

  def benchmark_1_gpu_static_batch_fp16(self):
    """Benchmark 1 gpu with static batch FP16."""
    self._setup()
    FLAGS.num_gpus = 1
    FLAGS.batch_size = self.batch_per_gpu
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_static_batch_fp16')
    FLAGS.static_batch = True
    FLAGS.max_length = 64
    FLAGS.dtype = 'fp16'
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps)

  def benchmark_xla_1_gpu_static_batch_fp16(self):
    """Benchmark 1 gpu with static batch w/xla and FP16."""
    self._setup()
    FLAGS.num_gpus = 1
    FLAGS.batch_size = self.batch_per_gpu
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_xla_1_gpu_static_batch_fp16')
    FLAGS.static_batch = True
    FLAGS.max_length = 64
    FLAGS.enable_xla = True
    FLAGS.dtype = 'fp16'
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps)

547
548
549
550
551
552
553
554
555
  def benchmark_8_gpu(self):
    """Benchmark 8 gpu."""
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.batch_size = self.batch_per_gpu * 8
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu')
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps)

556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
  def benchmark_8_gpu_fp16(self):
    """Benchmark 8 gpu FP16."""
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = self.batch_per_gpu * 8
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_fp16')
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps)

  def benchmark_xla_8_gpu(self):
    """Benchmark 8 gpu w/xla."""
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.enable_xla = True
    FLAGS.batch_size = self.batch_per_gpu * 8
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu')
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps)

  def benchmark_xla_8_gpu_fp16(self):
    """Benchmark 8 gpu w/xla and FP16."""
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.enable_xla = True
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = self.batch_per_gpu * 8
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_fp16')
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps)

587
  def benchmark_8_gpu_static_batch(self):
588
    """Benchmark 8 gpu with static batch."""
589
    self._setup()
guptapriya's avatar
guptapriya committed
590
    FLAGS.num_gpus = 8
591
592
593
    FLAGS.batch_size = self.batch_per_gpu * 8
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_static_batch')
    FLAGS.static_batch = True
Haoyu Zhang's avatar
Haoyu Zhang committed
594
    FLAGS.max_length = 64
595
596
597
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps)

598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
  def benchmark_8_gpu_static_batch_fp16(self):
    """Benchmark 8 gpu with static batch FP16."""
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = self.batch_per_gpu * 8
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_8_gpu_static_batch_fp16')
    FLAGS.static_batch = True
    FLAGS.max_length = 64
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps)

  def benchmark_xla_8_gpu_static_batch(self):
    """Benchmark 8 gpu with static batch w/xla."""
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.enable_xla = True
    FLAGS.batch_size = self.batch_per_gpu * 8
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_static_batch')
    FLAGS.static_batch = True
    FLAGS.max_length = 64
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps)

  def benchmark_xla_8_gpu_static_batch_fp16(self):
    """Benchmark 8 gpu with static batch w/xla and FP16."""
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.enable_xla = True
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = self.batch_per_gpu * 8
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_xla_8_gpu_static_batch_fp16')
    FLAGS.static_batch = True
    FLAGS.max_length = 64
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps)

Toby Boyd's avatar
Toby Boyd committed
637
638
639
640

class TransformerBaseKerasBenchmarkReal(TransformerKerasBenchmark):
  """Transformer based version real data benchmark tests."""

Hongkun Yu's avatar
Hongkun Yu committed
641
  def __init__(self, output_dir=TMP_DIR, root_data_dir=TMP_DIR, **kwargs):
Toby Boyd's avatar
Toby Boyd committed
642
643
    def_flags = {}
    def_flags['param_set'] = 'base'
Adrian Kuegel's avatar
Adrian Kuegel committed
644
    def_flags['train_steps'] = 50
David Chen's avatar
David Chen committed
645
    def_flags['log_steps'] = 10
Toby Boyd's avatar
Toby Boyd committed
646
647
648
649
650
651
652
653
654

    super(TransformerBaseKerasBenchmarkReal, self).__init__(
        output_dir=output_dir, default_flags=def_flags,
        root_data_dir=root_data_dir, batch_per_gpu=4096)


class TransformerBigKerasBenchmarkReal(TransformerKerasBenchmark):
  """Transformer based version real data benchmark tests."""

Tayo Oguntebi's avatar
Tayo Oguntebi committed
655
656
  def __init__(self, output_dir=TMP_DIR, root_data_dir=TMP_DIR,
               tpu=None, **kwargs):
Toby Boyd's avatar
Toby Boyd committed
657
658
    def_flags = {}
    def_flags['param_set'] = 'big'
Adrian Kuegel's avatar
Adrian Kuegel committed
659
    def_flags['train_steps'] = 50
David Chen's avatar
David Chen committed
660
    def_flags['log_steps'] = 10
Toby Boyd's avatar
Toby Boyd committed
661
662
663

    super(TransformerBigKerasBenchmarkReal, self).__init__(
        output_dir=output_dir, default_flags=def_flags,
Tayo Oguntebi's avatar
Tayo Oguntebi committed
664
665
666
        root_data_dir=root_data_dir, batch_per_gpu=3072,
        tpu=tpu)

Allen Wang's avatar
Allen Wang committed
667
668
669
670
671
672
  def _set_df_common(self):
    self._set_data_files(tpu_run=True)
    FLAGS.data_dir = self.train_data_dir
    FLAGS.vocab_file = self.vocab_file
    FLAGS.distribution_strategy = 'tpu'
    FLAGS.padded_decode = True
Tayo Oguntebi's avatar
Tayo Oguntebi committed
673
    FLAGS.train_steps = 300
Tayo Oguntebi's avatar
Tayo Oguntebi committed
674
675
    FLAGS.log_steps = 150
    FLAGS.steps_between_evals = 150
Tayo Oguntebi's avatar
Tayo Oguntebi committed
676
677
    FLAGS.static_batch = True
    FLAGS.use_ctl = True
Allen Wang's avatar
Allen Wang committed
678
    FLAGS.enable_checkpointing = False
Tayo Oguntebi's avatar
Tayo Oguntebi committed
679
680
681
    FLAGS.max_length = 64
    FLAGS.decode_batch_size = 32
    FLAGS.decode_max_length = 97
Allen Wang's avatar
Allen Wang committed
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

  def benchmark_2x2_tpu(self):
    """Port of former snaggletooth transformer_big model on 2x2."""
    self._setup()
    self._set_df_common()
    FLAGS.model_dir = self._get_model_dir('benchmark_2x2_tpu')
    FLAGS.batch_size = 6144

    self._run_and_report_benchmark(
        total_batch_size=FLAGS.batch_size,
        log_steps=FLAGS.log_steps)

  @owner_utils.Owner('tf-graph-compiler')
  def benchmark_2x2_tpu_mlir(self):
    """Run transformer_big model on 2x2 with the MLIR Bridge enabled."""
    self._setup()
    self._set_df_common()
    FLAGS.model_dir = self._get_model_dir('benchmark_2x2_tpu_mlir')
    FLAGS.batch_size = 6144
    tf.config.experimental.enable_mlir_bridge()
Tayo Oguntebi's avatar
Tayo Oguntebi committed
702
703
704
705

    self._run_and_report_benchmark(
        total_batch_size=FLAGS.batch_size,
        log_steps=FLAGS.log_steps)
Adrian Kuegel's avatar
Adrian Kuegel committed
706

Tayo Oguntebi's avatar
Tayo Oguntebi committed
707
708
709
  def benchmark_4x4_tpu(self):
    """Port of former GCP transformer_big model on 4x4."""
    self._setup()
Allen Wang's avatar
Allen Wang committed
710
    self._set_df_common()
Tayo Oguntebi's avatar
Tayo Oguntebi committed
711
712
713
714
715
716
717
    FLAGS.model_dir = self._get_model_dir('benchmark_4x4_tpu')
    FLAGS.batch_size = 24576

    self._run_and_report_benchmark(
        total_batch_size=FLAGS.batch_size,
        log_steps=FLAGS.log_steps)

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
718
719
720
721
  @owner_utils.Owner('tf-graph-compiler')
  def benchmark_4x4_tpu_mlir(self):
    """Run transformer_big model on 4x4 with the MLIR Bridge enabled."""
    self._setup()
Allen Wang's avatar
Allen Wang committed
722
723
    self._set_df_common()
    FLAGS.model_dir = self._get_model_dir('benchmark_4x4_tpu_mlir')
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
724
725
726
727
728
729
730
    FLAGS.batch_size = 24576
    tf.config.experimental.enable_mlir_bridge()

    self._run_and_report_benchmark(
        total_batch_size=FLAGS.batch_size,
        log_steps=FLAGS.log_steps)

Adrian Kuegel's avatar
Adrian Kuegel committed
731
732
733

if __name__ == '__main__':
  tf.test.main()