retinanet_input.py 11.3 KB
Newer Older
Abdullah Rashwan's avatar
Abdullah Rashwan committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Data parser and processing for RetinaNet.

Parse image and ground truths in a dataset to training targets and package them
into (image, labels) tuple for RetinaNet.
"""

# Import libraries
import tensorflow as tf

from official.vision.beta.dataloaders import parser
from official.vision.beta.dataloaders import utils
from official.vision.beta.ops import anchor
from official.vision.beta.ops import box_ops
from official.vision.beta.ops import preprocess_ops


class Parser(parser.Parser):
  """Parser to parse an image and its annotations into a dictionary of tensors."""

  def __init__(self,
               output_size,
               min_level,
               max_level,
               num_scales,
               aspect_ratios,
               anchor_size,
               match_threshold=0.5,
               unmatched_threshold=0.5,
               aug_rand_hflip=False,
               aug_scale_min=1.0,
               aug_scale_max=1.0,
               use_autoaugment=False,
               autoaugment_policy_name='v0',
               skip_crowd_during_training=True,
               max_num_instances=100,
               dtype='bfloat16',
               mode=None):
    """Initializes parameters for parsing annotations in the dataset.

    Args:
      output_size: `Tensor` or `list` for [height, width] of output image. The
        output_size should be divided by the largest feature stride 2^max_level.
      min_level: `int` number of minimum level of the output feature pyramid.
      max_level: `int` number of maximum level of the output feature pyramid.
      num_scales: `int` number representing intermediate scales added on each
        level. For instances, num_scales=2 adds one additional intermediate
        anchor scales [2^0, 2^0.5] on each level.
      aspect_ratios: `list` of float numbers representing the aspect raito
        anchors added on each level. The number indicates the ratio of width to
        height. For instances, aspect_ratios=[1.0, 2.0, 0.5] adds three anchors
        on each scale level.
      anchor_size: `float` number representing the scale of size of the base
        anchor to the feature stride 2^level.
      match_threshold: `float` number between 0 and 1 representing the
        lower-bound threshold to assign positive labels for anchors. An anchor
        with a score over the threshold is labeled positive.
      unmatched_threshold: `float` number between 0 and 1 representing the
        upper-bound threshold to assign negative labels for anchors. An anchor
        with a score below the threshold is labeled negative.
      aug_rand_hflip: `bool`, if True, augment training with random horizontal
        flip.
      aug_scale_min: `float`, the minimum scale applied to `output_size` for
        data augmentation during training.
      aug_scale_max: `float`, the maximum scale applied to `output_size` for
        data augmentation during training.
      use_autoaugment: `bool`, if True, use the AutoAugment augmentation policy
        during training.
      autoaugment_policy_name: `string` that specifies the name of the
        AutoAugment policy that will be used during training.
      skip_crowd_during_training: `bool`, if True, skip annotations labeled with
        `is_crowd` equals to 1.
      max_num_instances: `int` number of maximum number of instances in an
        image. The groundtruth data will be padded to `max_num_instances`.
      dtype: `str`, data type. One of {`bfloat16`, `float32`, `float16`}.
      mode: a ModeKeys. Specifies if this is training, evaluation, prediction or
        prediction with groundtruths in the outputs.
    """
    self._mode = mode
    self._max_num_instances = max_num_instances
    self._skip_crowd_during_training = skip_crowd_during_training

    # Anchor.
    self._output_size = output_size
    self._min_level = min_level
    self._max_level = max_level
    self._num_scales = num_scales
    self._aspect_ratios = aspect_ratios
    self._anchor_size = anchor_size
    self._match_threshold = match_threshold
    self._unmatched_threshold = unmatched_threshold

    # Data augmentation.
    self._aug_rand_hflip = aug_rand_hflip
    self._aug_scale_min = aug_scale_min
    self._aug_scale_max = aug_scale_max

    # Data Augmentation with AutoAugment.
    self._use_autoaugment = use_autoaugment
    self._autoaugment_policy_name = autoaugment_policy_name

    # Device.
    self._use_bfloat16 = True if dtype == 'bfloat16' else False

  def _parse_train_data(self, data):
    """Parses data for training and evaluation."""
    classes = data['groundtruth_classes']
    boxes = data['groundtruth_boxes']
    is_crowds = data['groundtruth_is_crowd']
    # Skips annotations with `is_crowd` = True.
    if self._skip_crowd_during_training:
      num_groundtrtuhs = tf.shape(input=classes)[0]
      with tf.control_dependencies([num_groundtrtuhs, is_crowds]):
        indices = tf.cond(
            pred=tf.greater(tf.size(input=is_crowds), 0),
            true_fn=lambda: tf.where(tf.logical_not(is_crowds))[:, 0],
            false_fn=lambda: tf.cast(tf.range(num_groundtrtuhs), tf.int64))
      classes = tf.gather(classes, indices)
      boxes = tf.gather(boxes, indices)

    # Gets original image and its size.
    image = data['image']

    image_shape = tf.shape(input=image)[0:2]

    # Normalizes image with mean and std pixel values.
    image = preprocess_ops.normalize_image(image)

    # Flips image randomly during training.
    if self._aug_rand_hflip:
      image, boxes, _ = preprocess_ops.random_horizontal_flip(image, boxes)

    # Converts boxes from normalized coordinates to pixel coordinates.
    boxes = box_ops.denormalize_boxes(boxes, image_shape)

    # Resizes and crops image.
    image, image_info = preprocess_ops.resize_and_crop_image(
        image,
        self._output_size,
        padded_size=preprocess_ops.compute_padded_size(self._output_size,
                                                       2**self._max_level),
        aug_scale_min=self._aug_scale_min,
        aug_scale_max=self._aug_scale_max)
    image_height, image_width, _ = image.get_shape().as_list()

    # Resizes and crops boxes.
    image_scale = image_info[2, :]
    offset = image_info[3, :]
    boxes = preprocess_ops.resize_and_crop_boxes(boxes, image_scale,
                                                 image_info[1, :], offset)
    # Filters out ground truth boxes that are all zeros.
    indices = box_ops.get_non_empty_box_indices(boxes)
    boxes = tf.gather(boxes, indices)
    classes = tf.gather(classes, indices)

    # Assigns anchors.
    input_anchor = anchor.build_anchor_generator(
        min_level=self._min_level,
        max_level=self._max_level,
        num_scales=self._num_scales,
        aspect_ratios=self._aspect_ratios,
        anchor_size=self._anchor_size)
    anchor_boxes = input_anchor(image_size=(image_height, image_width))
    anchor_labeler = anchor.AnchorLabeler(self._match_threshold,
                                          self._unmatched_threshold)
    (cls_targets, box_targets, cls_weights,
     box_weights) = anchor_labeler.label_anchors(
Zhenyu Tan's avatar
Zhenyu Tan committed
181
         anchor_boxes, boxes, tf.expand_dims(classes, axis=1))
Abdullah Rashwan's avatar
Abdullah Rashwan committed
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

    # If bfloat16 is used, casts input image to tf.bfloat16.
    if self._use_bfloat16:
      image = tf.cast(image, dtype=tf.bfloat16)

    # Packs labels for model_fn outputs.
    labels = {
        'cls_targets': cls_targets,
        'box_targets': box_targets,
        'anchor_boxes': anchor_boxes,
        'cls_weights': cls_weights,
        'box_weights': box_weights,
        'image_info': image_info,
    }
    return image, labels

  def _parse_eval_data(self, data):
    """Parses data for training and evaluation."""
    groundtruths = {}
    classes = data['groundtruth_classes']
    boxes = data['groundtruth_boxes']

    # Gets original image and its size.
    image = data['image']
    image_shape = tf.shape(input=image)[0:2]

    # Normalizes image with mean and std pixel values.
    image = preprocess_ops.normalize_image(image)

    # Converts boxes from normalized coordinates to pixel coordinates.
    boxes = box_ops.denormalize_boxes(boxes, image_shape)

    # Resizes and crops image.
    image, image_info = preprocess_ops.resize_and_crop_image(
        image,
        self._output_size,
        padded_size=preprocess_ops.compute_padded_size(self._output_size,
                                                       2**self._max_level),
        aug_scale_min=1.0,
        aug_scale_max=1.0)
    image_height, image_width, _ = image.get_shape().as_list()

    # Resizes and crops boxes.
    image_scale = image_info[2, :]
    offset = image_info[3, :]
    boxes = preprocess_ops.resize_and_crop_boxes(boxes, image_scale,
                                                 image_info[1, :], offset)
    # Filters out ground truth boxes that are all zeros.
    indices = box_ops.get_non_empty_box_indices(boxes)
    boxes = tf.gather(boxes, indices)
    classes = tf.gather(classes, indices)

    # Assigns anchors.
    input_anchor = anchor.build_anchor_generator(
        min_level=self._min_level,
        max_level=self._max_level,
        num_scales=self._num_scales,
        aspect_ratios=self._aspect_ratios,
        anchor_size=self._anchor_size)
    anchor_boxes = input_anchor(image_size=(image_height, image_width))
    anchor_labeler = anchor.AnchorLabeler(self._match_threshold,
                                          self._unmatched_threshold)
    (cls_targets, box_targets, cls_weights,
     box_weights) = anchor_labeler.label_anchors(
Zhenyu Tan's avatar
Zhenyu Tan committed
246
         anchor_boxes, boxes, tf.expand_dims(classes, axis=1))
Abdullah Rashwan's avatar
Abdullah Rashwan committed
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280

    # If bfloat16 is used, casts input image to tf.bfloat16.
    if self._use_bfloat16:
      image = tf.cast(image, dtype=tf.bfloat16)

    # Sets up groundtruth data for evaluation.
    groundtruths = {
        'source_id': data['source_id'],
        'height': data['height'],
        'width': data['width'],
        'num_detections': tf.shape(data['groundtruth_classes']),
        'image_info': image_info,
        'boxes': box_ops.denormalize_boxes(
            data['groundtruth_boxes'], image_shape),
        'classes': data['groundtruth_classes'],
        'areas': data['groundtruth_area'],
        'is_crowds': tf.cast(data['groundtruth_is_crowd'], tf.int32),
    }
    groundtruths['source_id'] = utils.process_source_id(
        groundtruths['source_id'])
    groundtruths = utils.pad_groundtruths_to_fixed_size(
        groundtruths, self._max_num_instances)

    # Packs labels for model_fn outputs.
    labels = {
        'cls_targets': cls_targets,
        'box_targets': box_targets,
        'anchor_boxes': anchor_boxes,
        'cls_weights': cls_weights,
        'box_weights': box_weights,
        'image_info': image_info,
        'groundtruths': groundtruths,
    }
    return image, labels