sentence_prediction.py 7.17 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Sentence prediction (classification) task."""
17
from absl import logging
18
import dataclasses
19
20
21
import numpy as np
from scipy import stats
from sklearn import metrics as sklearn_metrics
22
23
24
25
26
27
28
29
import tensorflow as tf
import tensorflow_hub as hub

from official.core import base_task
from official.modeling.hyperparams import config_definitions as cfg
from official.nlp.configs import bert
from official.nlp.data import sentence_prediction_dataloader
from official.nlp.modeling import losses as loss_lib
Chen Chen's avatar
Chen Chen committed
30
from official.nlp.tasks import utils
31
32
33
34
35


@dataclasses.dataclass
class SentencePredictionConfig(cfg.TaskConfig):
  """The model config."""
Hongkun Yu's avatar
Hongkun Yu committed
36
  # At most one of `init_checkpoint` and `hub_module_url` can
37
  # be specified.
Hongkun Yu's avatar
Hongkun Yu committed
38
  init_checkpoint: str = ''
39
  hub_module_url: str = ''
40
  metric_type: str = 'accuracy'
Pengchong Jin's avatar
Pengchong Jin committed
41
  model: bert.BertPretrainerConfig = bert.BertPretrainerConfig(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
42
      num_masked_tokens=0,  # No masked language modeling head.
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
      cls_heads=[
          bert.ClsHeadConfig(
              inner_dim=768,
              num_classes=3,
              dropout_rate=0.1,
              name='sentence_prediction')
      ])
  train_data: cfg.DataConfig = cfg.DataConfig()
  validation_data: cfg.DataConfig = cfg.DataConfig()


@base_task.register_task_cls(SentencePredictionConfig)
class SentencePredictionTask(base_task.Task):
  """Task object for sentence_prediction."""

  def __init__(self, params=cfg.TaskConfig):
    super(SentencePredictionTask, self).__init__(params)
Hongkun Yu's avatar
Hongkun Yu committed
60
    if params.hub_module_url and params.init_checkpoint:
61
62
63
64
65
66
      raise ValueError('At most one of `hub_module_url` and '
                       '`pretrain_checkpoint_dir` can be specified.')
    if params.hub_module_url:
      self._hub_module = hub.load(params.hub_module_url)
    else:
      self._hub_module = None
67
    self.metric_type = params.metric_type
68
69
70

  def build_model(self):
    if self._hub_module:
Chen Chen's avatar
Chen Chen committed
71
      encoder_from_hub = utils.get_encoder_from_hub(self._hub_module)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
72
      return bert.instantiate_bertpretrainer_from_cfg(
Pengchong Jin's avatar
Pengchong Jin committed
73
          self.task_config.model, encoder_network=encoder_from_hub)
74
    else:
Pengchong Jin's avatar
Pengchong Jin committed
75
      return bert.instantiate_bertpretrainer_from_cfg(self.task_config.model)
76

77
  def build_losses(self, labels, model_outputs, aux_losses=None) -> tf.Tensor:
78
79
    loss = loss_lib.weighted_sparse_categorical_crossentropy_loss(
        labels=labels,
Hongkun Yu's avatar
Hongkun Yu committed
80
        predictions=tf.nn.log_softmax(
Hongkun Yu's avatar
Hongkun Yu committed
81
            tf.cast(model_outputs['sentence_prediction'], tf.float32), axis=-1))
82
83
84
85
86
87
88
89

    if aux_losses:
      loss += tf.add_n(aux_losses)
    return loss

  def build_inputs(self, params, input_context=None):
    """Returns tf.data.Dataset for sentence_prediction task."""
    if params.input_path == 'dummy':
Hongkun Yu's avatar
Hongkun Yu committed
90

91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
      def dummy_data(_):
        dummy_ids = tf.zeros((1, params.seq_length), dtype=tf.int32)
        x = dict(
            input_word_ids=dummy_ids,
            input_mask=dummy_ids,
            input_type_ids=dummy_ids)
        y = tf.ones((1, 1), dtype=tf.int32)
        return (x, y)

      dataset = tf.data.Dataset.range(1)
      dataset = dataset.repeat()
      dataset = dataset.map(
          dummy_data, num_parallel_calls=tf.data.experimental.AUTOTUNE)
      return dataset

    return sentence_prediction_dataloader.SentencePredictionDataLoader(
        params).load(input_context)

  def build_metrics(self, training=None):
    del training
Hongkun Yu's avatar
Hongkun Yu committed
111
    metrics = [tf.keras.metrics.SparseCategoricalAccuracy(name='cls_accuracy')]
112
113
    return metrics

114
  def process_metrics(self, metrics, labels, model_outputs):
115
    for metric in metrics:
116
      metric.update_state(labels, model_outputs['sentence_prediction'])
117

118
119
  def process_compiled_metrics(self, compiled_metrics, labels, model_outputs):
    compiled_metrics.update_state(labels, model_outputs['sentence_prediction'])
120

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
  def validation_step(self, inputs, model: tf.keras.Model, metrics=None):
    if self.metric_type == 'accuracy':
      return super(SentencePredictionTask,
                   self).validation_step(inputs, model, metrics)
    features, labels = inputs
    outputs = self.inference_step(features, model)
    loss = self.build_losses(
        labels=labels, model_outputs=outputs, aux_losses=model.losses)
    if self.metric_type == 'matthews_corrcoef':
      return {
          self.loss:
              loss,
          'sentence_prediction':
              tf.expand_dims(
                  tf.math.argmax(outputs['sentence_prediction'], axis=1),
                  axis=0),
          'labels':
              labels,
      }
    if self.metric_type == 'pearson_spearman_corr':
      return {
          self.loss: loss,
          'sentence_prediction': outputs['sentence_prediction'],
          'labels': labels,
      }

  def aggregate_logs(self, state=None, step_outputs=None):
    if state is None:
      state = {'sentence_prediction': [], 'labels': []}
    state['sentence_prediction'].append(
        np.concatenate([v.numpy() for v in step_outputs['sentence_prediction']],
                       axis=0))
    state['labels'].append(
        np.concatenate([v.numpy() for v in step_outputs['labels']], axis=0))
    return state

  def reduce_aggregated_logs(self, aggregated_logs):
    if self.metric_type == 'matthews_corrcoef':
      preds = np.concatenate(aggregated_logs['sentence_prediction'], axis=0)
      labels = np.concatenate(aggregated_logs['labels'], axis=0)
      return {
          self.metric_type: sklearn_metrics.matthews_corrcoef(preds, labels)
      }
    if self.metric_type == 'pearson_spearman_corr':
      preds = np.concatenate(aggregated_logs['sentence_prediction'], axis=0)
      labels = np.concatenate(aggregated_logs['labels'], axis=0)
      pearson_corr = stats.pearsonr(preds, labels)[0]
      spearman_corr = stats.spearmanr(preds, labels)[0]
      corr_metric = (pearson_corr + spearman_corr) / 2
      return {self.metric_type: corr_metric}

172
173
  def initialize(self, model):
    """Load a pretrained checkpoint (if exists) and then train from iter 0."""
Hongkun Yu's avatar
Hongkun Yu committed
174
175
176
177
    ckpt_dir_or_file = self.task_config.init_checkpoint
    if tf.io.gfile.isdir(ckpt_dir_or_file):
      ckpt_dir_or_file = tf.train.latest_checkpoint(ckpt_dir_or_file)
    if not ckpt_dir_or_file:
178
179
180
181
182
183
184
185
186
      return

    pretrain2finetune_mapping = {
        'encoder':
            model.checkpoint_items['encoder'],
        'next_sentence.pooler_dense':
            model.checkpoint_items['sentence_prediction.pooler_dense'],
    }
    ckpt = tf.train.Checkpoint(**pretrain2finetune_mapping)
Hongkun Yu's avatar
Hongkun Yu committed
187
    status = ckpt.restore(ckpt_dir_or_file)
188
    status.expect_partial().assert_existing_objects_matched()
Hongkun Yu's avatar
Hongkun Yu committed
189
190
    logging.info('finished loading pretrained checkpoint from %s',
                 ckpt_dir_or_file)