question_answering.py 5.85 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Question answering task."""
import logging
import dataclasses
import tensorflow as tf
import tensorflow_hub as hub

from official.core import base_task
from official.modeling.hyperparams import config_definitions as cfg
from official.nlp.bert import input_pipeline
from official.nlp.configs import encoders
from official.nlp.modeling import models
Chen Chen's avatar
Chen Chen committed
27
from official.nlp.tasks import utils
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
28
29
30
31
32
33
34
35


@dataclasses.dataclass
class QuestionAnsweringConfig(cfg.TaskConfig):
  """The model config."""
  # At most one of `init_checkpoint` and `hub_module_url` can be specified.
  init_checkpoint: str = ''
  hub_module_url: str = ''
Pengchong Jin's avatar
Pengchong Jin committed
36
  model: encoders.TransformerEncoderConfig = (
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
      encoders.TransformerEncoderConfig())
  train_data: cfg.DataConfig = cfg.DataConfig()
  validation_data: cfg.DataConfig = cfg.DataConfig()


@base_task.register_task_cls(QuestionAnsweringConfig)
class QuestionAnsweringTask(base_task.Task):
  """Task object for question answering.

  TODO(lehou): Add post-processing.
  """

  def __init__(self, params=cfg.TaskConfig):
    super(QuestionAnsweringTask, self).__init__(params)
    if params.hub_module_url and params.init_checkpoint:
      raise ValueError('At most one of `hub_module_url` and '
                       '`init_checkpoint` can be specified.')
    if params.hub_module_url:
      self._hub_module = hub.load(params.hub_module_url)
    else:
      self._hub_module = None

  def build_model(self):
    if self._hub_module:
Chen Chen's avatar
Chen Chen committed
61
      encoder_network = utils.get_encoder_from_hub(self._hub_module)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
62
63
    else:
      encoder_network = encoders.instantiate_encoder_from_cfg(
Pengchong Jin's avatar
Pengchong Jin committed
64
          self.task_config.model)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
65
66
67
68

    return models.BertSpanLabeler(
        network=encoder_network,
        initializer=tf.keras.initializers.TruncatedNormal(
Pengchong Jin's avatar
Pengchong Jin committed
69
            stddev=self.task_config.model.initializer_range))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

  def build_losses(self, labels, model_outputs, aux_losses=None) -> tf.Tensor:
    start_positions = labels['start_positions']
    end_positions = labels['end_positions']
    start_logits, end_logits = model_outputs

    start_loss = tf.keras.losses.sparse_categorical_crossentropy(
        start_positions,
        tf.cast(start_logits, dtype=tf.float32),
        from_logits=True)
    end_loss = tf.keras.losses.sparse_categorical_crossentropy(
        end_positions,
        tf.cast(end_logits, dtype=tf.float32),
        from_logits=True)

    loss = (tf.reduce_mean(start_loss) + tf.reduce_mean(end_loss)) / 2
    return loss

  def build_inputs(self, params, input_context=None):
    """Returns tf.data.Dataset for sentence_prediction task."""
    if params.input_path == 'dummy':
      def dummy_data(_):
        dummy_ids = tf.zeros((1, params.seq_length), dtype=tf.int32)
        x = dict(
            input_word_ids=dummy_ids,
            input_mask=dummy_ids,
            input_type_ids=dummy_ids)
        y = dict(
            start_positions=tf.constant(0, dtype=tf.int32),
            end_positions=tf.constant(1, dtype=tf.int32))
        return (x, y)

      dataset = tf.data.Dataset.range(1)
      dataset = dataset.repeat()
      dataset = dataset.map(
          dummy_data, num_parallel_calls=tf.data.experimental.AUTOTUNE)
      return dataset

    batch_size = input_context.get_per_replica_batch_size(
        params.global_batch_size) if input_context else params.global_batch_size
    # TODO(chendouble): add and use nlp.data.question_answering_dataloader.
    dataset = input_pipeline.create_squad_dataset(
        params.input_path,
        params.seq_length,
        batch_size,
        is_training=params.is_training,
        input_pipeline_context=input_context)
    return dataset

  def build_metrics(self, training=None):
    del training
    # TODO(lehou): a list of metrics doesn't work the same as in compile/fit.
    metrics = [
        tf.keras.metrics.SparseCategoricalAccuracy(
            name='start_position_accuracy'),
        tf.keras.metrics.SparseCategoricalAccuracy(
            name='end_position_accuracy'),
    ]
    return metrics

  def process_metrics(self, metrics, labels, model_outputs):
    metrics = dict([(metric.name, metric) for metric in metrics])
    start_logits, end_logits = model_outputs
    metrics['start_position_accuracy'].update_state(
        labels['start_positions'], start_logits)
    metrics['end_position_accuracy'].update_state(
        labels['end_positions'], end_logits)

  def process_compiled_metrics(self, compiled_metrics, labels, model_outputs):
    start_logits, end_logits = model_outputs
    compiled_metrics.update_state(
        y_true=labels,  # labels has keys 'start_positions' and 'end_positions'.
        y_pred={'start_positions': start_logits, 'end_positions': end_logits})

  def initialize(self, model):
    """Load a pretrained checkpoint (if exists) and then train from iter 0."""
    ckpt_dir_or_file = self.task_config.init_checkpoint
    if tf.io.gfile.isdir(ckpt_dir_or_file):
      ckpt_dir_or_file = tf.train.latest_checkpoint(ckpt_dir_or_file)
    if not ckpt_dir_or_file:
      return

    ckpt = tf.train.Checkpoint(**model.checkpoint_items)
    status = ckpt.restore(ckpt_dir_or_file)
    status.expect_partial().assert_existing_objects_matched()
    logging.info('finished loading pretrained checkpoint from %s',
                 ckpt_dir_or_file)